Potential In-vitro Antiviral Activity of MV1035 on SARS-CoV-2 Wild Type Viruses

Page: [1656 - 1663] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive- sense, single stranded RNA virus, responsible for the pandemic outbreak called COVID-19. The pandemic, still ongoing, had presented unprecedented challenges in terms of finding appropriate pharmacological treatments.

Methods: Starting from the recent literature that demonstrates how ALKBH5 inhibitors could be used as a new strategy to reduce SARS-CoV-2 replication, we decided to repurpose our newly discovered ALKBH5 inhibitor MV1035, previously tested and proved effective against glioblastoma, for its putative antiviral activity against SARS-CoV-2. We demonstrated a reduction in SARS-CoV- 2-induced CPE after 72 h incubation using MV1035 (50 μM), for SARS-CoV-2 wild type (Wuhan strain) and South African variant.

Results: The results show how MV1035 seems to be able to reduce SARS-CoV-2 replication through an indirect mechanism of action, which might involve an interaction with the host cell rather than with a virus protein.

Conclusion: This may be particularly interesting as it lays the foundation for the rational design of molecules in principle not subject to drug resistance, as host cell proteins are not affected by virus mutations.

Keywords: SARS-CoV-2, ALKBH5, antiviral

Graphical Abstract

[1]
Kabinger, F.; Stiller, C.; Schmitzová, J.; Dienemann, C.; Kokic, G.; Hillen, H.S.; Höbartner, C.; Cramer, P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat. Struct. Mol. Biol., 2021, 28(9), 740-746.
[http://dx.doi.org/10.1038/s41594-021-00651-0] [PMID: 34381216]
[2]
Treatment and pharmaceutical prophylaxis of COVID-19., Available from:https://www.ecdc.europa.eu/en/covid-19/latest-evidence/treatment
[3]
Pourkarim, F.; Pourtaghi-Anvarian, S.; Rezaee, H. Molnupiravir: A new candidate for COVID-19 treatment. Pharmacol. Res. Perspect., 2022, 10(1), e00909.
[http://dx.doi.org/10.1002/prp2.909] [PMID: 34968008]
[4]
Antiviral Therapy | COVID-19 Treatment Guidelines, Available from : https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/
[5]
Wang, Z.; Yang, L. In the age of Omicron variant: Paxlovid raises new hopes of COVID-19 recovery. J. Med. Virol., 2021.
[http://dx.doi.org/10.1002/jmv.27540] [PMID: 34936106]
[6]
Tu, Y-F.; Chien, C-S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A Review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), E2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[7]
Andreano, E.; Nicastri, E.; Paciello, I.; Pileri, P.; Manganaro, N.; Piccini, G.; Manenti, A.; Pantano, E.; Kabanova, A.; Troisi, M.; Vacca, F.; Cardamone, D.; De Santi, C.; Torres, J.L.; Ozorowski, G.; Benincasa, L.; Jang, H.; Di Genova, C.; Depau, L.; Brunetti, J.; Agrati, C.; Capobianchi, M.R.; Castilletti, C.; Emiliozzi, A.; Fabbiani, M.; Montagnani, F.; Bracci, L.; Sautto, G.; Ross, T.M.; Montomoli, E.; Temperton, N.; Ward, A.B.; Sala, C.; Ippolito, G.; Rappuoli, R. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184(7), 1821-1835.e16.
[http://dx.doi.org/10.1016/j.cell.2021.02.035] [PMID: 33667349]
[8]
Wu, Y.; Chang, K.Y.; Lou, L.; Edwards, L.G.; Doma, B.K.; Xie, Z-R. In silico identification of drug candidates against COVID-19. Informatics Med. Unlocked, 2020, 21, 100461.
[http://dx.doi.org/10.1016/j.imu.2020.100461]
[9]
Xiao, X.; Wang, C.; Chang, D.; Wang, Y.; Dong, X.; Jiao, T.; Zhao, Z.; Ren, L.; Dela Cruz, C.S.; Sharma, L.; Lei, X.; Wang, J. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front. Immunol., 2020, 11, 586572.
[http://dx.doi.org/10.3389/fimmu.2020.586572] [PMID: 33324406]
[10]
Basu, S.; Ramaiah, S.; Anbarasu, A. In-silico strategies to combat COVID-19: A comprehensive review. Biotechnol. Genet. Eng. Rev., 2021, 37(1), 64-81.
[http://dx.doi.org/10.1080/02648725.2021.1966920] [PMID: 34470564]
[11]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[12]
Mohamed, K.; Yazdanpanah, N.; Saghazadeh, A.; Rezaei, N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg. Chem., 2021, 106, 104490.
[http://dx.doi.org/10.1016/j.bioorg.2020.104490] [PMID: 33261845]
[13]
Demir, Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev. Res., 2020, 81(5), 628-636.
[http://dx.doi.org/10.1002/ddr.21667] [PMID: 32232985]
[14]
Liu, J.; Xu, Y-P.; Li, K.; Ye, Q.; Zhou, H.Y.; Sun, H.; Li, X.; Yu, L.; Deng, Y.Q.; Li, R.T.; Cheng, M.L.; He, B.; Zhou, J.; Li, X.F.; Wu, A.; Yi, C.; Qin, C.F. The m6A methylome of SARS-CoV-2 in host cells. Cell Res., 2021, 31(4), 404-414.
[http://dx.doi.org/10.1038/s41422-020-00465-7] [PMID: 33510385]
[15]
Fantini, M.; Zuliani, V.; Spotti, M.A.; Rivara, M. Microwave assisted efficient synthesis of imidazole-based privileged structures. J. Comb. Chem., 2010, 12(1), 181-185.
[http://dx.doi.org/10.1021/cc900152y] [PMID: 19921823]
[16]
Malacrida, A.; Rivara, M.; Di Domizio, A.; Cislaghi, G.; Miloso, M.; Zuliani, V.; Nicolini, G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg. Med. Chem., 2020, 28(4), 115300.
[http://dx.doi.org/10.1016/j.bmc.2019.115300] [PMID: 31937477]
[17]
Di Domizio, A.; Vitriolo, A.; Vistoli, G.; Pedretti, A. SPILLO-PBSS: Detecting hidden binding sites within protein 3D-structures through a flexible structure-based approach. J. Comput. Chem., 2014, 35(27), 2005-2017.
[http://dx.doi.org/10.1002/jcc.23714] [PMID: 25179993]
[18]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics., 1996. Available from:http://www.ncbi.nlm.nih.gov/pubmed/8744570
[http://dx.doi.org/10.1016/0263-7855(96)00018-5]
[19]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[20]
Sever, B.; Altıntop, M.D.; Demir, Y.; Pekdoğan, M.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J. Mol. Struct., 2021, 1224, 129446.
[http://dx.doi.org/10.1016/j.molstruc.2020.129446]
[21]
Manenti, A.; Molesti, E.; Maggetti, M.; Torelli, A.; Lapini, G.; Montomoli, E. The theory and practice of the viral dose in neutralization assay: Insights on SARS-CoV-2 “doublethink” effect. J. Virol. Methods, 2021, 297, 114261.
[http://dx.doi.org/10.1016/j.jviromet.2021.114261] [PMID: 34403775]
[22]
Malacrida, A.; Semperboni, S.; Di Domizio, A.; Palmioli, A.; Broggi, L.; Airoldi, C.; Meregalli, C.; Cavaletti, G.; Nicolini, G. Tubulin binding potentially clears up Bortezomib and Carfilzomib differential neurotoxic effect. Sci. Rep., 2021, 11(1), 10523.
[http://dx.doi.org/10.1038/s41598-021-89856-3] [PMID: 34006972]
[23]
Giatti, S.; Di Domizio, A.; Diviccaro, S.; Falvo, E.; Caruso, D.; Contini, A.; Melcangi, R.C. Three-Dimensional proteome-wide scale screening for the 5-alpha reductase inhibitor finasteride: Identification of a novel off-target. J. Med. Chem., 2021, 64(8), 4553-4566.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02039] [PMID: 33843213]
[24]
Malacrida, A.; Di Domizio, A.; Bentivegna, A. MV1035 Overcomes temozolomide resistance in patient-derived glioblastoma stem cell lines. Biology , 2022, 11(1), 70.
[http://dx.doi.org/10.3390/biology11010070]
[25]
Bouhaddou, M.; Memon, D.; Meyer, B.; White, K.M.; Rezelj, V.V.; Correa Marrero, M.; Polacco, B.J.; Melnyk, J.E.; Ulferts, S.; Kaake, R.M.; Batra, J.; Richards, A.L.; Stevenson, E.; Gordon, D.E.; Rojc, A.; Obernier, K.; Fabius, J.M.; Soucheray, M.; Miorin, L.; Moreno, E.; Koh, C.; Tran, Q.D.; Hardy, A.; Robinot, R.; Vallet, T.; Nilsson-Payant, B.E.; Hernandez-Armenta, C.; Dunham, A.; Weigang, S.; Knerr, J.; Modak, M.; Quintero, D.; Zhou, Y.; Dugourd, A.; Valdeolivas, A.; Patil, T.; Li, Q.; Hüttenhain, R.; Cakir, M.; Muralidharan, M.; Kim, M.; Jang, G.; Tutuncuoglu, B.; Hiatt, J.; Guo, J.Z.; Xu, J.; Bouhaddou, S.; Mathy, C.J.P.; Gaulton, A.; Manners, E.J.; Félix, E.; Shi, Y.; Goff, M.; Lim, J.K.; McBride, T.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; De Wit, E.; Leach, A.R.; Kortemme, T.; Shoichet, B.; Ott, M.; Saez-Rodriguez, J.; tenOever, B.R.; Mullins, R.D.; Fischer, E.R.; Kochs, G.; Grosse, R.; García-Sastre, A.; Vignuzzi, M.; Johnson, J.R.; Shokat, K.M.; Swaney, D.L.; Beltrao, P.; Krogan, N.J. The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 2020, 182(3), 685-712.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.034] [PMID: 32645325]
[26]
Moolamalla, S.T.R.; Balasubramanian, R.; Chauhan, R.; Priyakumar, U.D.; Vinod, P.K. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. Microb. Pathog., 2021, 158, 105114.
[http://dx.doi.org/10.1016/j.micpath.2021.105114]