The Role of Aquatic Plants in Natural Products and Drug Discovery

Page: [386 - 407] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: Phytochemicals and their derivatives/analogues represent over 50% of the current medicines worldwide in clinical use. Despite a significant contribution to the total bioactive natural plant products, aquatic plants are underestimated, and several species are extinct and in the endangered list.

Objective: The aim of this review article is to draw the attention of common people and scientists toward a few important contributions of the aquatic plants to natural product chemistry and drug discovery by highlighting the chemical and pharmaceutical aspects of the same.

Methods: The presented data were collected and selected from the literature obtained by an online search for the ethnomedicinal properties, biological activities and bioactive chemical constituents of aquatic plants using Google Scholar, PubMed and Scifinder chemical abstract service.

Results: The selected literature data revealed that the extract and compounds isolated from several aquatic plants possess significant biological/pharmaceutical properties. For example, the α-asarone (24) and asiatic acid (33) isolated from Acorus calamus and Centella asiatica, respectively, exhibited significant neuroprotective effects in vitro and in vivo. The cripowellin A (59), cripowellin C (60), cripowellin B (61) and cripowellin D (62), isolated from Crinum erubescens, exhibited potent antiplasmodial and antiproliferative activities with half maximal inhibitory concentration (IC50) in nanomolar range (11-260 nM). Several other alkaloids from different Crinum species have also shown anticancer properties against different cancer cell lines with IC50 value <5 μM. Alkaloids and resin glycosides, isolated from different Ipomoea species, have displayed significant psychotropic, psychotomimetic, anticancer, and antibacterial activities with IC50 value <5 μM.

Conclusion: The aquatic plants play a significant role in the discovery of bioactive natural products. Although several biological activities and bioactive compounds have been reported from these plants, further assessment and scientific validation of most of their traditional usages still need to be done. There are several other similar species that are underestimated and not much explored. Many aquatic plants, such as Ipomoea carnea Jacq., Juncus lomatophyllus Spreng., Commelina benghalensis Linn, Gunnera perpensa L., Scirpus maritimus L. and Mentha longifolia (L.) L., may be considered for further evaluation. In addition to these, one should not undermine the potential of Crinum macowanii for COVID-19 pathogenesis, as its chemical constituent lycorine has shown significant SARS-CoV-2 inhibitory potential (EC50, 0.3 μM; SI >129). Furthermore, most rural communities are still using the wetland resources for their cultural, medicinal, economic, domestic, and agricultural needs. Hence, the conservation of aquatic plants and wetlands is an issue of great concern.

Keywords: Aquatic plants, ethnomedicinal usages, biological activities, bioactive compounds, conservation, wetlands.

Graphical Abstract

[1]
Balakumbahan, R.; Rajamani, K.; Kumanan, K. Acorus calamus: An overview. J. Med. Plants Res., 2010, 4, 2740-2745.
[2]
Copping, L.G. Crop protection agents from nature: Natural products and analogs; The Royal Society of Chemistry: Cambridge, 1996, p. 501.
[3]
Wilson, J. How do wetlands purify water?; , 2017. Available from: https://sciencing.com/ecosystem-wetlands-6164461.html
[4]
Upadhyay, H.C.; Sisodia, B.S.; Verma, R.K.; Darokar, M.P.; Srivastava, S.K. Antiplasmodial potential of extracts from two species of genus Blumea. Pharm. Biol., 2013, 51(10), 1326-1330.
[http://dx.doi.org/10.3109/13880209.2013.790453] [PMID: 23767769]
[5]
Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus ammannia. Curr. Top. Med. Chem., 2019, 19(10), 784-794.
[http://dx.doi.org/10.2174/1568026619666190412101047] [PMID: 30977452]
[6]
Upadhyay, H.C.; Mishra, A.; Pandey, J.; Sharma, P.; Tamrakar, A.K.; Srivastava, A.K.; Khan, F.; Srivastava, S.K. In vitro, in vivo and in silico Antihyperglycemic Activity of Some Semi-synthetic Phytol Derivatives. Med. Chem., 2020.
[http://dx.doi.org/10.2174/1573406417666201216124018] [PMID: 33327922]
[7]
Upadhyay, H.C.; Singh, M.; Prakash, O.; Khan, F.; Srivastava, S.K.; Bawankule, D.U. QSAR, ADME and docking guided semi-synthesis and in vitro evaluation of 4-hydroxy-α-tetralone analogs for anti-inflammatory activity. SN Applied Sci., 2020, 2, 2069.
[http://dx.doi.org/10.1007/s42452-020-03798-5]
[8]
Bobbink, R.; Whigham, D.F.; Beltman, B.; Verhoeven, J.T.A. Wetland functioning in relation to biodiversity conservation and restoration. InWetlands: Functioning, biodiversity conservation, and restoration; Springer: Berlin, Heidelberg, 2006, pp. 1-12.
[http://dx.doi.org/10.1007/978-3-540-33189-6_1]
[9]
Neori, A. Reddy, K.R.; Číšková-Končalová, H.; Agami, M. Bioactive chemicals and biological-biochemical activities and their functions in rhizospheres of wetland plants. Bot. Rev., 2000, 66(3), 350-378.
[http://dx.doi.org/10.1007/BF02868922]
[10]
Gadzirayi, C.T.; Mutandwa, E.; Chihiya, J.; Mary, C. Indeginous knowledge systems in sustainable utilization of wetlands in communal areas of Zimbabwe  Case of Hwedza district. Afr. J. Agric. Res., 2006, 1, 131-137.
[11]
Rajkaran, A.; Adams, J.B.; Preez, D.R. A method for monitoring mangrove harvesting at the Mngazana Estuary; South Africa, 2010, p. 5914.
[12]
Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes, 1998, 2, 133-148.
[http://dx.doi.org/10.1023/A:1009988607044]
[13]
Mahdi, J.G. Medicinal potential of Willow: A chemical perspective of aspirin discovery. J. Saudi Chem. Soc., 2010, 14, 317-322.
[http://dx.doi.org/10.1016/j.jscs.2010.04.010]
[14]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acorus calamus: Scientific validation of ayurvedic tradition from natural resources. Pharm. Biol., 2007, 45, 651-666.
[http://dx.doi.org/10.1080/13880200701538724]
[15]
Hao, Z.Y.; Liang, D.; Luo, H.; Liu, Y.F.; Ni, G.; Zhang, Q.J.; Li, L.; Si, Y.K.; Sun, H.; Chen, R.Y.; Yu, D.Q. Bioactive sesquiterpenoids from the rhizomes of Acorus calamus. J. Nat. Prod., 2012, 75(6), 1083-1089.
[http://dx.doi.org/10.1021/np300095c] [PMID: 22671987]
[16]
Dong, W.; Yang, D.; Lu, R. Chemical constituents from the rhizome of Acorus calamus L. Planta Med., 2010, 76(5), 454-457.
[http://dx.doi.org/10.1055/s-0029-1186217] [PMID: 19847743]
[17]
Nawamaki, K.; Kuroyanagi, M. Sesquiterpenoids from Acorus calamus as germination inhibitors. Phytochemistry, 1996, 43, 1175-1182.
[http://dx.doi.org/10.1016/S0031-9422(96)00401-3]
[18]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Med., 2007, 73(3), 283-285.
[http://dx.doi.org/10.1055/s-2007-967114] [PMID: 17286241]
[19]
Lee, M.H.; Chen, Y.Y.; Tsai, J.W.; Wang, S.C.; Watanabe, T.; Tsai, Y.C. Inhibitory effect of β-asarone, a component of Acorus calamus essential oil, on inhibition of adipogenesis in 3T3-L1 cells. Food Chem., 2011, 126, 1-7.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.052]
[20]
Liu, X.C.; Zhou, L.G.; Liu, Z.L.; Du, S.S. Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel. Molecules, 2013, 18(5), 5684-5696.
[http://dx.doi.org/10.3390/molecules18055684] [PMID: 23676474]
[21]
Champman, J.M.; Knoy, C.; Kindscher, K.; Brown, R.C.D.; Niemann, S. Identification of antineoplastic and neurotrophic lignans in medicinal prairie plants by liquid chromatography electron impact mass spectrometry; LC/EI/MS, 2002, pp. 2002-2004.
[22]
Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[23]
James, J.T.; Dubery, I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.). Urban. Molecules, 2009, 14(10), 3922-3941.
[http://dx.doi.org/10.3390/molecules14103922] [PMID: 19924039]
[24]
Rajkumar, S.; Jebanesan, A. Larvicidal and adult emergence inhibition effect of Centella asiatica Brahmi (Umbelliferae) against mosquito Culex Quinquefasciatus Say (Diptera  Culicidae). Afr. J. Biomed. Res., 2005, 8, 31-33.
[25]
George, M.; Joseph, L. Ramaswamy, Anti-allergic, anti-pruritic, and anti-inflammatory activities of Centella asiatica extracts. Afr. J. Tradit. Complement. Altern. Med., 2009, 6(4), 554-559.
[PMID: 20606777]
[26]
Abdulla, M.A.; Al-Bayaty, F.H.; Younis, L.T.; Abu Hassan, M.I. Anti-ulcer activity of Centella asiatica leaf extract against ethanol-induced gastric mucosal injury in rats. J. Med. Plants Res., 2010, 4, 1253-1259.
[27]
Orhan, I.E. Centella asiatica (L.) urban: From traditional medicine to modern medicine with neuroprotective potential. Evidence-based Complement. Altern. Med., 2012.
[http://dx.doi.org/10.1155/2012/946259]
[28]
Gray, N.E.; Alcazar Magana, A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev., 2018, 17(1), 161-194.
[http://dx.doi.org/10.1007/s11101-017-9528-y] [PMID: 31736679]
[29]
Jana, U.; Sur, T.K.; Maity, L.N.; Debnath, P.K.; Bhattacharyya, D. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Med. Coll. J., 2010, 12(1), 8-11.
[PMID: 20677602]
[30]
Krishnamurthy, R.G.; Senut, M.C.; Zemke, D.; Min, J.; Frenkel, M.B.; Greenberg, E.J.; Yu, S.W.; Ahn, N.; Goudreau, J.; Kassab, M.; Panickar, K.S.; Majid, A. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J. Neurosci. Res., 2009, 87(11), 2541-2550.
[http://dx.doi.org/10.1002/jnr.22071] [PMID: 19382233]
[31]
Xu, M.F.; Xiong, Y.Y.; Liu, J.K.; Qian, J.J.; Zhu, L.; Gao, J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol. Sin., 2012, 33(5), 578-587.
[http://dx.doi.org/10.1038/aps.2012.3] [PMID: 22447225]
[32]
Nataraj, J.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci., 2017, 20(6), 351-359.
[http://dx.doi.org/10.1080/1028415X.2015.1135559] [PMID: 26856988]
[33]
Welbat, J.U.; Chaisawang, P.; Pannangrong, W.; Wigmore, P. Neuroprotective properties of asiatic acid against 5-fluorouracil chemotherapy in the hippocampus in an adult rat model. Nutrients, 2018, 10(8), 10.
[http://dx.doi.org/10.3390/nu10081053] [PMID: 30096914]
[34]
Lee, K.Y.; Bae, O.N.; Weinstock, S.; Kassab, M.; Majid, A. Neuroprotective effect of asiatic acid in rat model of focal embolic stroke. Biol. Pharm. Bull., 2014, 37(8), 1397-1401.
[http://dx.doi.org/10.1248/bpb.b14-00055] [PMID: 25087961]
[35]
Sarumathi, A. Anti-proliferative effect of asiatic acid on Hep-G2 cell line. Genes Rev., 2015, 1, 37-44.
[http://dx.doi.org/10.18488/journal.103/2015.1.2/103.2.37.44]
[36]
Wu, Z.W.; Li, W.B.; Zhou, J.; Liu, X.; Wang, L.; Chen, B.; Wang, M.K.; Ji, L.; Hu, W.C.; Li, F. Oleanane-and ursane-type triterpene saponins from Centella asiatica exhibit neuroprotective effects. J. Agric. Food Chem., 2020, 68(26), 6977-6986.
[http://dx.doi.org/10.1021/acs.jafc.0c01476] [PMID: 32502339]
[37]
Li, S.Q.; Xie, Y.S.; Meng, Q.W.; Zhang, J.; Zhang, T. Neuroprotective properties of Madecassoside from Centella asiatica after hypoxic-ischemic injury. Pak. J. Pharm. Sci., 2016, 29(6), 2047-2051.
[PMID: 28375122]
[38]
Govindan, G.; Sambandan, T.G.; Govindan, M.; Sinskey, A.; Vanessendelft, J.; Adenan, I.; Rha, C.K. A bioactive polyacetylene compound isolated from Centella asiatica. Planta Med., 2007, 73(6), 597-599.
[http://dx.doi.org/10.1055/s-2007-981521] [PMID: 17520525]
[39]
Yoshida, M.; Fuchigami, M.; Nagao, T.; Okabe, H.; Matsunaga, K.; Takata, J.; Karube, Y.; Tsuchihashi, R.; Kinjo, J.; Mihashi, K.; Fujioka, T. Antiproliferative constituents from Umbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol. Pharm. Bull., 2005, 28(1), 173-175.
[http://dx.doi.org/10.1248/bpb.28.173] [PMID: 15635187]
[40]
Jamil, S.S.; Nizami, Q.; Salam, M. Centella asiatica (Linn.) urban óa review. Indian J. Nat. Prod. Resour., 2007, 6, 158-170.
[41]
Raquibul Hasan, S.M.; Hossain, M.M.; Akter, R.; Jamila, M.; Mazumder, E.H.; Rahman, S. Sedative and anxiolytic effects of different fractions of the Commelina benghalensis Linn. Drug Discov. Ther., 2009, 3(5), 221-227.
[PMID: 22495632]
[42]
Chowdhury, T.A.; Hasanat, A.; Kamal, A.T.M.M. Thrombolytic and cytotoxic activity of methanolic extract of Commelina benghalensis (Family: Commelinaceae) leaves. J. Sci. Innov. Res., 2015, 4, 100-104.
[http://dx.doi.org/10.31254/jsir.2015.4210]
[43]
Chakrabarty, N.; Chowdhury, T.A.; Shoibe, M.; Kabir, M.S.H.; Hasan, Md. Antidepressant activity of methanol extract of Commelina benghalensis Linn. whole plant. World J. Pharm. Res., 2016, 5(7), 1726-1733.
[44]
Khatun, A.; Rahman, M.; Rahman, M.S.; Hossain, M.K.; Rashid, M.A. Terpenoids and phytosteroids isolated from Commelina benghalensis Linn. with antioxidant activity. J. Basic Clin. Physiol. Pharmacol., 2019, 31(1), 4-5.
[PMID: 31770097]
[45]
Orni, P.R. Shetu, H.J.; Khan, T. S.S.B.R. and P.R.D. A comprehensive review on Commelina benghalensis L. (Commelinaceae). Int. J. Pharmacogn, 2018, 5, 637-645.
[46]
Presley, C.C.; Krai, P.; Dalal, S.; Su, Q.; Cassera, M.; Goetz, M.; Kingston, D.G.I. New potently bioactive alkaloids from Crinum erubescens. Bioorg. Med. Chem., 2016, 24(21), 5418-5422.
[http://dx.doi.org/10.1016/j.bmc.2016.08.058] [PMID: 27624525]
[47]
Thi Ngoc Tram, N.; Titorenkova, T.V.; St Bankova, V.; Handjieva, N.V.; Popov, S.S.; Crinum, L. Amaryllidaceae). Fitoterapia, 2002, 73(3), 183-208.
[http://dx.doi.org/10.1016/S0367-326X(02)00068-0] [PMID: 12048015]
[48]
Likhitwitayawuid, K.; Angerhofer, C.K.; Chai, H.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N. Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J. Nat. Prod., 1993, 56(8), 1331-1338.
[http://dx.doi.org/10.1021/np50098a017] [PMID: 8229016]
[49]
Ghosal, S.; Rao, P.H.; Saini, K.S. Natural occurrence of 11-O-acetylambelline and 11-O-acetyl-1,2-β-epoxyambelline in Crinum latifolium: Immuno-regulant alkaloids. Pharm. Res., 1985, 2(5), 251-252.
[http://dx.doi.org/10.1023/A:1016329231315] [PMID: 24272848]
[50]
Elgorashi, E.E.; Malan, S.F.; Stafford, G.I.; van Staden, J. Quantitative structure-activity relationship studies on acetylcholinesterase enzyme inhibitory effects of amaryllidaceae alkaloids. S. Afr. J. Bot., 2006, 72, 224-231.
[http://dx.doi.org/10.1016/j.sajb.2005.08.001]
[51]
Min, B.S.; Gao, J.J.; Nakamura, N.; Kim, Y.H.; Hattori, M. Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1217-1219.
[http://dx.doi.org/10.1248/cpb.49.1217] [PMID: 11558618]
[52]
Sun, Q.; Shen, Y.H.; Tian, J.M.; Tang, J.; Su, J.; Liu, R.H.; Li, H.L.; Xu, X.K.; Zhang, W.D. Chemical constituents of Crinum asiaticum L. var. sinicum Baker and their cytotoxic activities. Chem. Biodivers., 2009, 6(10), 1751-1757.
[http://dx.doi.org/10.1002/cbdv.200800273] [PMID: 19842135]
[53]
Meena, A.K.; Yadav, A.K.; Niranjan, U.S.; Singh, B.; Nagariya, A.K.; Verma, M. Review on Cyperus rotundus-A potential herb. Int. J. Pharm. Clin. Res., 2010, 2, 20-22.
[54]
Mannarreddy, P.; Denis, M.; Munireddy, D.; Pandurangan, R.; Thangavelu, K.P.; Venkatesan, K. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines. Biomed. Pharmacother., 2017, 95, 1375-1387.
[http://dx.doi.org/10.1016/j.biopha.2017.09.051] [PMID: 28946185]
[55]
Sayed, H.M.; Mohamed, M.H.; Farag, S.F.; Mohamed, G.A.; Proksch, P. A new steroid glycoside and furochromones from Cyperus rotundus L. Nat. Prod. Res., 2007, 21(4), 343-350.
[http://dx.doi.org/10.1080/14786410701193056] [PMID: 17479423]
[56]
Seo, E.J.; Lee, D.U.; Kwak, J.H.; Lee, S.M.; Kim, Y.S.; Jung, Y.S. Antiplatelet effects of Cyperus rotundus and its component (+)-nootkatone. J. Ethnopharmacol., 2011, 135(1), 48-54.
[http://dx.doi.org/10.1016/j.jep.2011.02.025] [PMID: 21354294]
[57]
Jeong, S.J.; Miyamoto, T.; Inagaki, M.; Kim, Y.C.; Higuchi, R. Rotundines A-C, three novel sesquiterpene alkaloids from Cyperus rotundus. J. Nat. Prod., 2000, 63(5), 673-675.
[http://dx.doi.org/10.1021/np990588r] [PMID: 10843585]
[58]
Mammo, F.K.; Mohanlall, V.; Shode, F.O. Gunnera perpensa L.: A multi-use ethnomedicinal plant species in South Africa. Afr. J. Sci. Technol. Innov. Dev., 2017, 9, 77-83.
[http://dx.doi.org/10.1080/20421338.2016.1269458]
[59]
Simelane, M.B.C.; Lawal, O.A.; Djarova, T.G.; Opoku, A.R. In vitro antioxidant and cytotoxic activity of Gunnera perpensa L. (Gunneraceae) from South Africa. J. Med. Plants Res., 2010, 4, 2181-2188.
[60]
Mathibe, L.J.; Botha, J.; Naidoo, S. Z-Venusol, from Gunnera perpensa, induces apoptotic cell death in breast cancer cells in vitro. S. Afr. J. Bot., 2016, 102, 228-233.
[http://dx.doi.org/10.1016/j.sajb.2015.07.010]
[61]
Brookes, K.B.; Dutton, M.F. Bioactive components of the uteroactive medicinal plant, Gunnera perpensa (or Ugobo). S. Afr. J. Sci., 2007, 103, 187-189.
[62]
Khan, F.; Peter, X.K.; Mackenzie, R.M.; Katsoulis, L.; Gehring, R.; Munro, O.Q.; van Heerden, F.R.; Drewes, S.E. Venusol from Gunnera perpensa: Structural and activity studies. Phytochemistry, 2004, 65(8), 1117-1121.
[http://dx.doi.org/10.1016/j.phytochem.2004.02.024] [PMID: 15110692]
[63]
Hussein-Al-Ali, S.H.; Al-Qubaisi, M.; Rasedee, A.; Hussein, M.Z. Evaluation of the cytotoxic effect of ellagic acid nanocomposite in lung cancer A549 cell line and RAW 264.9 cells. J. Bionanoscience, 2017, 11, 578-583.
[http://dx.doi.org/10.1166/jbns.2017.1473]
[64]
Ito, A.; Chai, H.B.; Lee, D.; Kardono, L.B.S.; Riswan, S.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. Ellagic acid derivatives and cytotoxic cucurbitacins from Elaeocarpus mastersii. Phytochemistry, 2002, 61(2), 171-174.
[http://dx.doi.org/10.1016/S0031-9422(02)00232-7] [PMID: 12169311]
[65]
Mertens-Talcott, S.U.; Talcott, S.T.; Percival, S.S. Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. J. Nutr., 2003, 133(8), 2669-2674.
[http://dx.doi.org/10.1093/jn/133.8.2669] [PMID: 12888656]
[66]
Weisburg, J.H.; Schuck, A.G.; Reiss, S.E.; Wolf, B.J.; Fertel, S.R.; Zuckerbraun, H.L.; Babich, H. Ellagic acid, a dietary polyphenol, selectively cytotoxic to HSC-2 oral carcinoma cells. Anticancer Res., 2013, 33(5), 1829-1836.
[PMID: 23645727]
[67]
Meira, M.; da Silva, E.P.; David, J.M.; David, J.P. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Brazilian J. Pharmacogn, 2012, 22, 682-713.
[http://dx.doi.org/10.1590/S0102-695X2012005000025]
[68]
El-Shamy, A.I.; Abdel-Razek, A.F.; Nassar, M.I. Phytochemical review of Juncus L. genus (Fam. Juncaceae). Arab. J. Chem., 2015, 8, 614-623.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.007]
[69]
DellaGreca, M.; Monaco, P.; Previtera, L.; Zarrelli, A.; Pollio, A.; Pinto, G.; Fiorentino, A. Minor bioactive dihydrophenanthrenes from Juncus effusus. J. Nat. Prod., 1997, 60, 1265-1268.
[http://dx.doi.org/10.1021/np970268c]
[70]
DellaGreca, M.; Fiorentino, A.; Monaco, P.; Previtera, L.; Zarrelli, A. A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus. Tetra. Lett., 2002, 43, 2573-2575.
[71]
DellaGreca, M.; Fiorentino, A.; Isidori, M.; Lavorgna, M.; Monaco, P.; Previtera, L.; Zarrelli, A. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry, 2002, 60(6), 633-638.
[http://dx.doi.org/10.1016/S0031-9422(02)00152-8] [PMID: 12126711]
[72]
DellaGreca, M.; Isidori, M.; Lavorgna, M.; Monaco, P.; Previtera, L.; Zarrelli, A. Bioactivity of phenanthrenes from Juncus acutus on Selenastrum capricornutum. J. Chem. Ecol., 2004, 30(4), 867-879.
[http://dx.doi.org/10.1023/B:JOEC.0000028437.96654.2c] [PMID: 15260229]
[73]
DellaGreca, M.; Fiorentino, A.; Molinaro, A.; Monaco, P.; Previtera, L. A Bioactive Dihydrodibenzoxepin from Juncus effusus. Phytochemistry, 1993, 34, 1182-1184.
[http://dx.doi.org/10.1016/S0031-9422(00)90742-8]
[74]
DellaGreca, M.; Fiorentino, A.; Mangoni, L.; Molinaro, A.; Monaco, P.; Previtera, L. Cytotoxic 9,10-dihydrophenanthrenes from Juncus effusus L. Tetrahedron, 1993, 49(16), 425-3432.
[75]
Behery, F.A.A.; Naeem, Z.E.M.; Maatooq, G.T.; Amer, M.M.A.; Wen, Z.H.; Sheu, J.H.; Ahmed, A.F. Phenanthrenoids from Juncus acutus L., new natural lipopolysaccharide-inducible nitric oxide synthase inhibitors. Chem. Pharm. Bull. (Tokyo), 2007, 55(8), 1264-1266.
[http://dx.doi.org/10.1248/cpb.55.1264] [PMID: 17666857]
[76]
Awaad, A.S. Phenolic glycosides of Juncus acutus and its anti-eczematic activity. Chem. Nat. Compd., 2006, 42, 152-155.
[http://dx.doi.org/10.1007/s10600-006-0065-y]
[77]
Mohammad Hosein, F.; Roodabeh, B.; Ali, G.; Fatemeh, F.; Fariba, N. Pharmacological activity of Mentha longifolia and its phytoconstituents. J. Tradit. Chin. Med., 2017, 37(5), 710-720.
[http://dx.doi.org/10.1016/S0254-6272(17)30327-8] [PMID: 32188234]
[78]
Mikaili, P.; Mojaverrostami, S.; Moloudizargari, M.; Aghajanshakeri, S. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol. Anc. Sci. Life, 2013, 33(2), 131-138.
[PMID: 25284948]
[79]
Rahimifard, N.; Hajimehdipoor, H.; Hedayati, M.H.; Bagheri, O.; Pishehvar, H.; Ajani, Y. Cytotoxic effects of essential oils and extracts of some Mentha species on Vero, Hela and Hep2 cell lines. Faslnamah-i Giyahan-i Daruyi, 2010, 9(35)
[80]
Bown, D. Encyclopedia of herbs and their uses; Dorling Kindersley Limited: New York, London, 1995.
[81]
Sikder, M.; Jisha, H.; Kuddus, M.; Rumi, F.; Kaisar, M.A.; Rashid, M.A. Evaluation of bioactivities of Nymphaea nouchali (Burm. f)—the national flower of Bangladesh. Bang. Pharm. J., 2012, 15(1), 1-5.http://refhub.elsevier.com/S0753-3322(18)30957-0/sbref0035
[82]
Deutschlnder, M.S.; Lall, N.; Van De Venter, M. Plant species used in the treatment of diabetes by South African traditional healers: An Inventory. Pharm. Biol., 2009, 47, 348-365.
[http://dx.doi.org/10.1080/13880200902752959]
[83]
Raja, M.K.M.M.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on Nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res., 2010, 1(3), 311-319.
[http://dx.doi.org/10.4103/0110-5558.72424] [PMID: 22247863]
[84]
Bajpai, V.K.; Alam, M.B.; Ju, M.K.; Kwon, K.R.; Huh, Y.S.; Han, Y.K.; Lee, S.H. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother., 2018, 103, 1397-1407.
[http://dx.doi.org/10.1016/j.biopha.2018.04.186] [PMID: 29864924]
[85]
Bhandarkar, M.R.; Khan, A. Antihepatotoxic effect of Nymphaea stellata willd., against carbon tetrachloride-induced hepatic damage in albino rats. J. Ethnopharmacol., 2004, 91(1), 61-64.
[http://dx.doi.org/10.1016/j.jep.2003.11.020] [PMID: 15036469]
[86]
Khare, C.P. Indian Medicinal Plants: An illustrated dictionary; Springer International: New Delhi, 2007.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[87]
Parimala, M.; Shoba, F.G. Evaluation of Antidiabetic potential of Nymphaea nouchali Burm. F. seeds in STZ - induced diabetic rats. Int. J. Pharm. Pharm. Sci., 2014, 6, 536-541.
[88]
Singh, M.; Jain, A.P. Development and characterization of anti-acne gel containing Nymphaea nouchali ethanolic extract. Pharma Innov. J., 2018, 7, 170-174.
[89]
Dash, B.K.; Sen, M.K.; Alam, K.; Hossain, K.; Islam, R.; Banu, N.A.; Rahman, S.; Jamal, A.H.M. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Ann. Clin. Microbiol. Antimicrob., 2013, 12, 27.
[http://dx.doi.org/10.1186/1476-0711-12-27] [PMID: 24099586]
[90]
Murakami, A.; Ali, A.M.; Mat-Salleh, K.; Koshimizu, K.; Ohigashi, H. Screening for the in vitro anti-tumor-promoting activities of edible plants from Malaysia. Biosci. Biotechnol. Biochem., 2000, 64(1), 9-16.
[http://dx.doi.org/10.1271/bbb.64.9] [PMID: 10705442]
[91]
Sarma, H.; Sarma, A.M.; Sarma, C.M. Traditional knowledge of weeds  A study of herbal medicines and vegetables used by the Assamese people (India). Herba Pol., 2008, 54, 80-88.
[92]
Kabir, S.R.; Zubair, M.A.; Nurujjaman, M.; Haque, M.A.; Hasan, I.; Islam, M.F.; Hossain, M.T.; Hossain, M.A.; Rakib, M.A.; Alam, M.T.; Shaha, R.K.; Hossain, M.T.; Kimura, Y.; Absar, N. Purification and characterization of a Ca2+-dependent novel lectin from Nymphaea nouchali tuber with antiproliferative activities. Biosci. Rep., 2011, 31(6), 465-475.
[http://dx.doi.org/10.1042/BSR20100126] [PMID: 21291421]
[93]
Singh, M.; Jain, A.P. Qualitative and quantitative determination of secondary metabolites and antioxidant potential of Nymphaea nouchali flowers. J. Drug Deliv. Ther., 2018, 8, 111-115.
[http://dx.doi.org/10.22270/jddt.v8i6-s.2095]
[94]
Chowdhury, B.N.; Haque, Md. Steroids from the stem of Nymphaea stellate. J. Bangladesh Acad. Sci., 2013, 37(1), 109-113.
[http://dx.doi.org/10.3329/jbas.v37i1.15687]
[95]
Alam, M.B.; Ahmed, A.; Motin, M.A.; Kim, S.; Lee, S.H. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci. Rep., 2018, 8(1), 13928.
[http://dx.doi.org/10.1038/s41598-018-32303-7] [PMID: 30224716]
[96]
Zhang, Z.; ElSohly, H.N.; Li, X.C.; Khan, S.I.; Broedel, S.E., Jr; Raulli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod., 2003, 66(4), 548-550.
[http://dx.doi.org/10.1021/np020442j] [PMID: 12713413]
[97]
Powell, R.G.; Bajaj, R.; McLaughlin, J.L. Bioactive stilbenes of Scirpus maritimus. J. Nat. Prod., 1987, 50(2), 293-296.
[http://dx.doi.org/10.1021/np50050a040] [PMID: 3655799]
[98]
Arora, S.; Gonzalez, A.F.; Solanki, K. Combretastatin A-4 and its analogs in cancer therapy. Int. J. Pharm. Sci. Rev. Res., 2013, 22(2), 168-174.
[99]
DellaGreca, M.; Ferrara, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry, 1998, 49, 1299-1304.
[http://dx.doi.org/10.1016/S0031-9422(98)00092-2]
[100]
Saeidnia, S. The story of beta-sitosterol- A review. European J. Med. Plants, 2014, 4, 590-609.
[http://dx.doi.org/10.9734/EJMP/2014/7764]
[101]
Pettit, G.R.; Meng, Y.; Gearing, R.P.; Herald, D.L.; Pettit, R.K.; Doubek, D.L.; Chapuis, J.C.; Tackett, L.P. Antineoplastic agents. 522. Hernandia peltata (Malaysia) and Hernandia nymphaeifolia (Republic of Maldives). J. Nat. Prod., 2004, 67(2), 214-220.
[http://dx.doi.org/10.1021/np030125s] [PMID: 14987061]
[102]
Hahm, J.C.; Lee, I.K.; Kang, W.K.; Kim, S.U.; Ahn, Y.J. Cytotoxicity of neolignans identified in Saururus chinensis towards human cancer cell lines. Planta Med., 2005, 71(5), 464-469.
[http://dx.doi.org/10.1055/s-2005-864143] [PMID: 15931587]
[103]
Yang, R.L.; Yan, Z.H.; Lu, Y. Cytotoxic phenylpropanoids from carrot. J. Agric. Food Chem., 2008, 56(9), 3024-3027.
[http://dx.doi.org/10.1021/jf7036517] [PMID: 18422328]
[104]
Verma, S.; Twilley, D.; Esmear, T.; Oosthuizen, C.B.; Reid, A-M. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Front. Pharmacol., 2020, 11, 561334.
[http://dx.doi.org/10.3389/fphar.2020.561334]
[105]
Zhang, Y.N.; Zhang, Q.Y.; Li, X.D.; Xiong, J.; Xiao, S.Q.; Wang, Z.; Zhang, Z.R.; Deng, C.L.; Yang, X.L.; Wei, H.P.; Yuan, Z.M.; Ye, H.Q.; Zhang, B. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg. Microbes Infect., 2020, 9(1), 1170-1173.
[http://dx.doi.org/10.1080/22221751.2020.1772676] [PMID: 32432977]
[106]
Nair, J.J.; Machocho, A.K.; Campbell, W.E.; Brun, R.; Viladomat, F.; Codina, C.; Bastida, J. Alkaloids from Crinum macowanii. Phytochemistry, 2000, 54(8), 945-950.
[http://dx.doi.org/10.1016/S0031-9422(00)00128-X] [PMID: 11014295]
[107]
Sun, J-Y.; Zhu, M-Z.; Wang, S-W.; Miao, S.; Xie, Y-H.; Wang, J-B. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine, 2007, 14(5), 353-359.
[http://dx.doi.org/10.1016/j.phymed.2006.08.003] [PMID: 17097281]
[108]
Goss, P.E.; Baptiste, J.; Fernandes, B.; Baker, M.; Dennis, J.W. A phase I study of swainsonine in patients with advanced malignancies. Cancer Res., 1994, 54(6), 1450-1457.
[PMID: 8137247]
[109]
Goss, P.E.; Reid, C.L.; Bailey, D.; Dennis, J.W. Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin. Cancer Res., 1997, 3(7), 1077-1086.
[PMID: 9815786]
[110]
Shaheen, P.E.; Stadler, W.; Elson, P.; Knox, J.; Winquist, E.; Bukowski, R.M. Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Invest. New Drugs, 2005, 23(6), 577-581.
[http://dx.doi.org/10.1007/s10637-005-0793-z] [PMID: 16034517]
[111]
Selvakumari, E.; Shantha, A.; Kumar, C.S.; Prabhu, T.P. Phytochemistry and pharmacology of the genus Nymphaea. J. Acad. Ind. Res., 2016, 5(7), 98-108.
[112]
McGaw, L.J.; Jäger, A.K.; van Staden, J. Isolation of β-asarone, an antibacterial and anthelmintic compound, from Acorus calamus in South Africa. S. Afr. J. Bot., 2002, 68, 31-35.
[http://dx.doi.org/10.1016/S0254-6299(15)30436-1]
[113]
Kabir, M.S.H.; Hasanat, A.; Chowdhury, T.A.; Rashid, M.M.U.; Hossain, M.M.; Ahmed, S. Study of antidiarrheal and anthelmintic activity methanol extract of Commelina benghalensis leaves. Afr. J. Pharm. Pharmacol., 2016, 10(32), 657-664.
[http://dx.doi.org/10.5897/AJPP2015.4434]
[114]
Hossain, F.; Saha, S.; Islam, M.M.; Nasrin, S.; Adhikari, S. Analgesic and anti-infammatory activity of Commelina benghalensis Linn. Turk. J. Pharm. Sci, 2014, 11(1), 25-32.
[115]
Hasan, S.M.R.; Hossain, M.M.; Akter, R.; Jamila, M.; Mazumder, M.E.H.; Faruque, A. Analgesic activity of the different fractions of aerial parts of Commelina benghalensis Linn. Int. J. Pharmacol., 2010, 6(1), 63-67.
[http://dx.doi.org/10.3923/ijp.2010.63.67]
[116]
Sambrekar, S.N.; Patil, P.A.; Kangralkar, V.A. Protective activity of Commelina benghalensis root extracts against paracetamol induced hepatic damage in wistar rats. Pharmacologyonline, 2009, 3, 836-844.
[117]
Sambrekar, S.N.; Patil, P.A.; Patil, S.A. Wound healing activity of root extracts of Commelina benghalensis Linn. Res. J. Pharm. Tech, 2011, 4(11), 1772-1776.
[118]
Batool, R.; Aziz, E.; Iqbal, J.; Salahuddin, H.; Tan, B.K.H.; Tabassum, S.; Tariq, M. In vitro antioxidant and anti-cancer activities and phytochemical analysis of Commelina benghalensis L. root extracts. Asian Pac. J. Trop. Biomed., 2020, 10(9), 417-425.
[http://dx.doi.org/10.4103/2221-1691.290133]
[119]
Sahu, R.K.; Kar, M.; Routray, R. DPPH free radical scavenging activity of some leafy vegetables used by tribals of Odisha, India. J. Med. Plants Studies, 2013, 1(4), 21-27.
[120]
Gurjar, H.P.S.; Irchhaiya, R.; Verma, A. Antidiabetic activity and phytochemical investigation on the whole plant of Commelina benghalensis Linn. in male albino rat. J. Drug Deliv. Ther., 2016, 6(2), 26-29.
[http://dx.doi.org/10.22270/jddt.v6i2.1200]
[121]
Chowdhury, T.A.; Kabir, M.S.H.; Hossain, M.I.; Farhad, M.; Rahman, T.; Haque, R. Antinociceptive activity of methanol extract of Commelina benghalensis Linn. whole plant. World J. Pharm. Res., 2016, 5(9), 127-135.
[122]
Nasrin, M.; Afroz, F.; Sharmin, S.; Rana, M.S.; Sohrab, M.H. Cytotoxic, antimicrobial and antioxidant properties of Commelina diffusa Burm. F. Pharmacol. Pharm., 2019, 10, 82-93.
[http://dx.doi.org/10.4236/pp.2019.102007]
[123]
Sultana, T.; Mannan, M.A.; Ahmed, T. Evaluation of central nervous system (CNS) depressant activity of methanolic extract of Commelina diffusa Burm. in mice. Clinical Phytosci., 2018, 4, 5.
[http://dx.doi.org/10.1186/s40816-018-0063-1]
[124]
Jäger, A.K.; Adsersen, A.; Fennell, C.W. Acetylcholinesterase inhibition of Crinum sp. S. Afr. J. Bot., 2004, 70(2), 323-325.
[http://dx.doi.org/10.1016/S0254-6299(15)30254-4]
[125]
Radebe, P.G.; Fibrich, B.D.; Madikizela, B.; Lalla, N. Fighting aging through elastase inhibition using South African aquatic plants. S. Afr. J. Bot., 2018, 115, 306-307.
[http://dx.doi.org/10.1016/j.sajb.2018.02.112]
[126]
Ferreira, A.A.; Amaral, F.A.; Duarte, I.D.G.; Oliveira, P.M.; Alves, R.B.; Silveira, D.; Azevedo, A.O.; Raslan, D.S.; Castro, M.S. Antinociceptive effect from Ipomoea cairica extract. J. Ethnopharmacol., 2006, 105(1-2), 148-153.
[http://dx.doi.org/10.1016/j.jep.2005.10.012] [PMID: 16307856]
[127]
Fatima, N.; Rahman, M.M.; Khan, M.A.; Fu, J. A review on Ipomoea carnea: Pharmacology, toxicology and phytochemistry. J. Complement. Integr. Med., 2014, 11(2), 55-62.
[http://dx.doi.org/10.1515/jcim-2013-0046] [PMID: 24651023]
[128]
Mirón-López, G.; Herrera-Ruiz, M.; Estrada-Soto, S.; Aguirre-Crespo, F.; Vazquez-Navarrete, L.; León-Rivera, I. Resin glycosides from the roots of Ipomoea tyrianthina and their biological activity. J. Nat. Prod., 2007, 70(4), 557-562.
[http://dx.doi.org/10.1021/np0604634] [PMID: 17309299]
[129]
Akroum, S.; Bendjeddou, D.; Satta, D.; Lalaoui, K. Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. American-Eurasian J. Sci. Res., 2009, 4(2), 93-96.
[130]
Alam, M.B.; Ju, M.K.; Lee, S.H. DNA protecting activities of Nymphaea nouchali (Burm. f) flower extract attenuate t-BHP-induced oxidative stress cell death through NRF2-mediated induction of heme oxygenase-1 expression by activating MAP-kinases. Int. J. Mol. Sci., 2017, 18(10), 2069.
[http://dx.doi.org/10.3390/ijms18102069] [PMID: 28956831]
[131]
Sumathi, A.; Senthamarai, R. In vitro immunomodulatory effects of methanolic extract of Nymphaea nouchali Burm. f. Adv. Pharmacol. Toxicol., 2015, 16(2), 1-9.
[132]
Kashnia, A.R.; Senthilkumar, K.L.; Karthiyayini, T.; Senthilkumar, K. Anti-hyperlipidemic activity of ethanolic and aqueous extracts of flowers of Nymphaea nouchali (Burm.) f. Res. J. Pharmacol. Pharmacodyn, 2009, 1(1), 13-15.
[133]
Parimala, M.; Debjani, M.; Vasanthi, H.R.; Shoba, F.G. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization. J. Adv. Pharm. Technol. Res., 2015, 6(4), 183-189.
[http://dx.doi.org/10.4103/2231-4040.165013] [PMID: 26605160]
[134]
Maji, A.; Beg, M.; Das, S.; Jana, G.C.; Jha, P.K.; Islam, M.M. Spectroscopic study on interaction of Nymphaea nouchali leaf extract mediated bactericidal gold nanoparticles with human serum albumin. J. Mol. Struct., 2019, 1179, 685-693.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.055]
[135]
Priyanka, U.; Anand, A.; Bhargavi, K.; Zehra, A.; Tiwari, A.K. Presence of postprandial antidysmetabolic and antioxidative stress properties in aqueous methanol extract of seeds and tuber of aquatic food plant Nymphaea nouchali (Burm.f.). Cogent Food Agric., 2016, 2, 1249172.
[http://dx.doi.org/10.1080/23311932.2016.1249172]
[136]
Sarwar, S.; Khatun, A.; Chowdhury, S.S.; Sultana, N.; Rahman, M.A. Antinociceptive and anti-depressant like activities of methanolic flower extract of Nymphaea nouchali. Saudi J. Med. Pharm. Sci., 2016, 2(9), 256-261.
[137]
Hossain, M.A.; Lee, S.J.; Park, J.Y.; Reza, M.A.; Kim, T.H.; Lee, K.J.; Suh, J.W.; Park, S.C. Modulation of quorum sensing-controlled virulence factors by Nymphaea tetragona (water lily) extract. J. Ethnopharmacol., 2015, 174, 482-491.
[http://dx.doi.org/10.1016/j.jep.2015.08.049] [PMID: 26325430]
[138]
Youssef, A.M.M.; El-Swaify, Z.A.S. Anti-tumour effect of two Persicaria species seeds on colon and prostate cancers. Biomed. Pharmacol. J., 2018, 11(2), 635-644.
[http://dx.doi.org/10.13005/bpj/1416]
[139]
Ondua, M.; Njoya, E.M.; Abdalla, M.A.; McGaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol., 2019, 234, 27-35.
[http://dx.doi.org/10.1016/j.jep.2018.12.030] [PMID: 30572091]
[140]
Henkel, R.; Fransman, W.; Hipler, U.C.; Wiegand, C.; Schreiber, G.; Menkveld, R.; Weitz, F.; Fisher, D. Typha capensis (Rohrb.)N.E.Br. (bulrush) extract scavenges free radicals, inhibits collagenase activity and affects human sperm motility and mitochondrial membrane potential in vitro: A pilot study. Andrologia, 2012, 44(Suppl. 1), 287-294.
[http://dx.doi.org/10.1111/j.1439-0272.2011.01179.x] [PMID: 21729138]