Novel Caffeic Acid - Zinc Acetate Complex: Studies on Promising Antidiabetic and Antioxidative Synergism Through Complexation

Page: [147 - 162] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: The role of Zn(II) in storage, insulin secretion and function has been documented, while plant phenolics have antioxidant and other pharmacological credence.

Objective: The study aimed at synthesizing a novel medicinal Zn(II) complex. The medicinal properties of zinc(II) and caffeic acid were considered in synthesizing a novel complex with promising and improved antioxidant and anti-hyperglycaemic attributes.

Methods: Complex synthesis was done using a 1:2 molar ratio of zinc acetate and caffeic acid and structurally characterized using NMR, FT-IR, high resolution-mass spectroscopy and HPLC. Its cellular toxicity was assessed in Chang liver cells and L-myotubes. In vitro, cellular, and isolated tissue models were used to evaluate the antioxidant and anti-hyperglycaemic properties of the complex relative to its precursors. Molecular docking was used to investigate the interaction with insulin signalling target proteins: GLUT-4 and protein kinase B (Akt/PKB).

Results: Zinc(II) and caffeic acid interacted via Zn:O4 coordination, with the complex having one moiety of Zn(II) and 2 moieties of caffeic acid. The complex showed in vitro radical scavenging, α- glucosidase and α-amylase inhibitory activity up to 2.6 folds stronger than caffeic acid. The ability to inhibit lipid peroxidation (IC50 = 26.4 μM) and GSH depletion (IC50 = 16.8 μM) in hepatocytes was comparable to that of ascorbic acid (IC50 = 24.5 and 29.2 μM) and about 2 folds stronger than caffeic acid. Complexation improved glucose uptake activity of caffeic acid in L-6 myotubes (EC50 = 23.4 versus 169 μM) and isolated rat muscle tissues (EC50 = 339 versus 603 μM). Molecular docking showed better interaction with insulin signalling target proteins (GLUT-4 and Akt/PKB) than caffeic acid. The complex was not hepatotoxic or myotoxic.

Conclusion: Data suggest a synergistic antioxidant and anti-hyperglycaemic potential between zinc and caffeic acid, which could be attributed to the Zn:O4 coordination. Thus, it may be of medicinal relevance.

Keywords: Zinc(II), caffeic acid, complexation, structure-function relationship, diabetes, oxidative stress.

Graphical Abstract

[1]
International Diabetes Federation (IDF) IDF Diabetes Atlas., 2019.https://diabetesatlas.org/upload/resources/2019/IDF_Atlas_10th_Edition_2019
[2]
Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 587-591.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[3]
Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. (Qassim), 2017, 11(2), 65-71.
[PMID: 28539866]
[4]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[5]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[6]
Martini, L.A.; Catania, A.S.; Ferreira, S.R. Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutr. Rev., 2010, 68(6), 341-354.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00296.x] [PMID: 20536779]
[7]
Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys., 2016, 611, 79-85.
[http://dx.doi.org/10.1016/j.abb.2016.05.022] [PMID: 27262257]
[8]
Chukwuma, C.I.; Mashele, S.S.; Eze, K.C.; Matowane, G.R.; Islam, S.M.; Bonnet, S.L.; Noreljaleel, A.E.M.; Ramorobi, L.M. A comprehensive review on zinc(II) complexes as anti-diabetic agents: The advances, scientific gaps and prospects. Pharmacol. Res., 2020, 155104744
[http://dx.doi.org/10.1016/j.phrs.2020.104744] [PMID: 32156651]
[9]
Yoshikawa, Y.; Ueda, E.; Suzuki, Y.; Yanagihara, N.; Sakurai, H.; Kojima, Y. New insulinomimetic zinc(II) complexes of alpha-amino acids and their derivatives with Zn(N2O2) coordination mode. Chem. Pharm. Bull. (Tokyo), 2001, 49(5), 652-654.
[http://dx.doi.org/10.1248/cpb.49.652] [PMID: 11383627]
[10]
Yoshikawa, Y.; Ueda, E.; Kojima, Y.; Sakurai, H. The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci., 2004, 75(6), 741-751.
[http://dx.doi.org/10.1016/j.lfs.2004.02.006] [PMID: 15172182]
[11]
Adachi, Y.; Yoshida, J.; Kodera, Y.; Kato, A.; Yoshikawa, Y.; Kojima, Y.; Sakurai, H. A new insulin-mimetic bis(allixinato)zinc(II) complex: Structure-activity relationship of zinc(II) complexes. J. Biol. Inorg. Chem., 2004, 9(7), 885-893.
[http://dx.doi.org/10.1007/s00775-004-0590-8] [PMID: 15378407]
[12]
Naito, Y.; Yoshikawa, Y.; Shintani, M.; Kamoshida, S.; Kajiwara, N.; Yasui, H. Anti-hyperglycemic effect of long-term bis(hinokitiolato)zinc complex ([Zn(hkt)2]) ingestion on insulin resistance and pancreatic islet cells protection in type 2 diabetic KK-Ay Mice. Biol. Pharm. Bull., 2017, 40(3), 318-326.
[http://dx.doi.org/10.1248/bpb.b16-00797] [PMID: 28250273]
[13]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in Hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[14]
Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 2006, 217(2-3), 213-220.
[http://dx.doi.org/10.1016/j.tox.2005.09.011] [PMID: 16243424]
[15]
Jung, U.J.; Lee, M.K.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 2006, 318(2), 476-483.
[http://dx.doi.org/10.1124/jpet.106.105163] [PMID: 16644902]
[16]
Motloung, D.M.; Mashele, S.S.; Matowane, G.R.; Swain, S.S.; Bonnet, S.L.; Noreljaleel, A.E.M.; Oyedemi, S.O.; Chukwuma, C.I. Synthesis, characterization, antidiabetic and antioxidative evaluation of a novel Zn(II)-gallic acid complex with multi-facet activity. J. Pharm. Pharmacol., 2020, 72(10), 1412-1426.
[http://dx.doi.org/10.1111/jphp.13322] [PMID: 32639035]
[17]
Akuru, E.A.; Chukwuma, C.I.; Oyeagu, C.E.; Erukainure, O.L.; Mashile, B.; Setlhodi, R.; Mashele, S.S.; Makhafola, T.J.; Unuofin, J.O.; Abifarin, T.O.; Mpendulo, T.C. Nutritional and phytochemical profile of pomegranate (“Wonderful variety”) peel and its effects on hepatic oxidative stress and metabolic alterations. J. Food Biochem., 2021, 46(4)e13913
[http://dx.doi.org/10.1111/jfbc.13913] [PMID: 34453451]
[18]
Chukwuma, C.I.; Mashele, S.S.; Swain, S.S. Antidiabetic and antioxidative properties of novel Zn(II)-cinnamic acid complex. Med. Chem., 2021, 17(8), 913-925.
[http://dx.doi.org/10.2174/1573406416666200929143257] [PMID: 32990538]
[19]
Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci., 2002, 163(6), 1161-1168.
[http://dx.doi.org/10.1016/S0168-9452(02)00332-1]
[20]
van Huyssteen, M.; Milne, P.J.; Campbell, E.E.; van de Venter, M. Antidiabetic and cytotoxicity screening of five medicinal plants used by traditional African health practitioners in the Nelson Mandela Metropole, South Africa. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(2), 150-158.
[http://dx.doi.org/10.4314/ajtcam.v8i2.63202] [PMID: 22238496]
[21]
Oyedemi, S.; Koekemoer, T.; Bradley, G.; van de Venter, M.; Afolayan, A. In vitro anti-hyperglycemia properties of the aqueous stem bark extract from Strychnos henningsii (Gilg). Int. J. Diabetes Dev. Ctries., 2013, 33(2), 120-127.
[http://dx.doi.org/10.1007/s13410-013-0120-8]
[22]
Erukainure, O.L.; Ijomone, O.M.; Chukwuma, C.I.; Xiao, X.; Salau, V.F.; Islam, M.S. Dacryodes edulis (G. Don) H.J. Lam modulates glucose metabolism, cholinergic activities and Nrf2 expression, while suppressing oxidative stress and dyslipidemia in diabetic rats. J. Ethnopharmacol., 2020, 255112744
[http://dx.doi.org/10.1016/j.jep.2020.112744] [PMID: 32165174]
[23]
Oke, I.M.; Ramorobi, L.M.; Mashele, S.S.; Bonnet, S.L.; Makhafola, T.J.; Eze, K.C.; Noreljaleel, A.E.M.; Chukwuma, C.I. Vanillic acid-Zn(II) complex: A novel complex with antihyperglycaemic and anti-oxidative activity. J. Pharm. Pharmacol., 2021, 73(12), 1703-1714.
[http://dx.doi.org/10.1093/jpp/rgab086] [PMID: 34109975]
[24]
Swain, S.S.; Paidesetty, S.K.; Dehury, B.; Das, M.; Vedithi, S.C.; Padhy, R.N. Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Sci. Rep., 2020, 10(1), 6839.
[http://dx.doi.org/10.1038/s41598-020-63913-9] [PMID: 32322091]
[25]
Norouzi, S.; Adulcikas, J.; Sohal, S.S.; Myers, S. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One, 2018, 13(1)e0191727
[http://dx.doi.org/10.1371/journal.pone.0191727] [PMID: 29373583]
[26]
Fakhruddin, S.; Alanazi, W.; Jackson, K.E. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. J. Diabetes Res., 2017, 20178379327
[http://dx.doi.org/10.1155/2017/8379327] [PMID: 28164134]
[27]
Fatani, S.H.; Babakr, A.T. NourEldin, E.M.; Almarzouki, A.A. Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes Metab. Syndr., 2016, 10(2)(Suppl. 1), S64-S67.
[http://dx.doi.org/10.1016/j.dsx.2016.01.028] [PMID: 26806326]
[28]
Di Meo, S.; Venditti, P. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev., 2020, 20209829176
[http://dx.doi.org/10.1155/2020/9829176] [PMID: 32411336]
[29]
Chukwuma, C.I.; Islam, M.S.; Amonsou, E.O. Comparative study on the physicochemical, anti-oxidative, anti-hyperglycemic and anti-lipidemic properties of amadumbe (Colocasia esculenta) and okra (Abelmoschus esculentus) mucilage. J. Food Biochem., 2018, 42(5)e12601
[http://dx.doi.org/10.1111/jfbc.12601]
[30]
Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep., 2020, 10(1), 2611.
[http://dx.doi.org/10.1038/s41598-020-59451-z] [PMID: 32054964]
[31]
Marreiro, D.D.; Cruz, K.J.; Morais, J.B.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R. Zinc and oxidative stress: Current mechanisms. Antioxidants, 2017, 6(2), 24.
[http://dx.doi.org/10.3390/antiox6020024] [PMID: 28353636]
[32]
Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol., 2015, 26(2), 165-170.
[http://dx.doi.org/10.1515/jbcpp-2013-0141] [PMID: 24825096]
[33]
Moelands, S.V.; Lucassen, P.L.; Akkermans, R.P.; De Grauw, W.J.; Van de Laar, F.A. Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst. Rev., 2018, 12(12)CD005061
[http://dx.doi.org/10.1002/14651858.CD005061.pub3] [PMID: 30592787]
[34]
Aronoff, S.L.; Berkowitz, K.; Shreiner, B.; Want, L. Glucose metabolism and regulation: Beyond insulin and glucagon. Diabetes Spectr., 2004, 17(3), 183-190.
[http://dx.doi.org/10.2337/diaspect.17.3.183]
[35]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8(8), 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[36]
Shisheva, A.; Gefel, D.; Shechter, Y. Insulin like effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes, 1992, 41(8), 982-988.
[http://dx.doi.org/10.2337/diab.41.8.982] [PMID: 1628774]
[37]
Jayawardena, R.; Ranasinghe, P.; Galappatthy, P.; Malkanthi, R.; Constantine, G.; Katulanda, P. Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr., 2012, 4(1), 13.
[http://dx.doi.org/10.1186/1758-5996-4-13] [PMID: 22515411]
[38]
Tsuda, S.; Egawa, T.; Ma, X.; Oshima, R.; Kurogi, E.; Hayashi, T. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5'AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J. Nutr. Biochem., 2012, 23(11), 1403-1409.
[http://dx.doi.org/10.1016/j.jnutbio.2011.09.001] [PMID: 22227267]
[39]
Chang, L.; Chiang, S.H.; Saltiel, A.R. Insulin signaling and the regulation of glucose transport. Mol. Med., 2004, 10(7-12), 65-71.
[http://dx.doi.org/10.2119/2005-00029.Saltiel] [PMID: 16307172]