In vitro and In silico Xanthine Oxidase Inhibitory Activities of 3-Aryl-2- thioxo-2,3-dihydroquinazolin-4(1H)-one Derivatives

Page: [384 - 392] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Hyperuricemia is associated with several disease conditions, such as atherosclerosis, arthritis, kidney stones, and many others. Xanthine oxidase (XO) is an enzyme that catalyzes the conversion of xanthine to uric acid. Hence, XO is a major therapeutic drug target in the treatment of hyperuricemia and associated disorders.

Objectives: The current study aimed to identify XO inhibitors based on quinazoline derivatives, with the potential to be used against gout and other hyperuricemia-associated diseases.

Methods: In the current study, eighteen quinazoline derivatives 2-19 were synthesized and assessed for their in vitro xanthine Oxidase (XO) inhibitory activity. Furthermore, the most active compounds, 5 and 17, were subjected to kinetics studies, followed by computational docking. Human BJ fibroblast cells were used to measure the cytotoxicity of active compounds.

Results: Compounds 4-6, 8, 10, 13, 15-17, and 19 were found active against XO, with an IC50 values between 33.688 to 362.173μM. The obtained results showed that compounds 5 and 17 possess a significant xanthine oxidase inhibitory activity. The kinetics and molecular docking studies suggested that compounds 5 (IC50 = 39.904 ± 0.21 μM) and 17 (IC50 = 33.688 ± 0.30 μM) bind in the allosteric site of XO and exhibit a non-competitive type of inhibition. The molecular docking studies also predicted that the NH group of the pyrimidine ring binds with Ser344 residues of XO. Furthermore, all active compounds were non-cytotoxic on the human BJ fibroblasts cell line.

Conclusion: This study identifies a series of quinazoline compounds as xanthine oxidase inhibitors, with the potential to be further investigated.

Keywords: Xanthine oxidase (XO), quinazoline, non-competitive, hyperuricemia, arthritis, molecular docking.

Graphical Abstract

[1]
Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase in drug metabolism: Beyond a role as a detoxifying enzyme. Curr. Med. Chem., 2016, 23(35), 4027-4036.
[http://dx.doi.org/10.2174/0929867323666160725091915] [PMID: 27458036]
[2]
Boueiz, A.; Damarla, M.; Hassoun, P.M.J.A.J.P-L.C.; Physiology, M. Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(5), L830-L840.
[http://dx.doi.org/10.1152/ajplung.00007.2008] [PMID: 18344415]
[3]
Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol., 2015, 6, 524-551.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[4]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109] [PMID: 26316329]
[5]
Chen, C.; Lü, J.M.; Yao, Q. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Med. Sci. Monit., 2016, 22, 2501-2512.
[http://dx.doi.org/10.12659/MSM.899852] [PMID: 27423335]
[6]
Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of hyperuricemia and urate-lowering treatments. Front. Med. (Lausanne), 2018, 5, 160.
[http://dx.doi.org/10.3389/fmed.2018.00160] [PMID: 29904633]
[7]
Jin, M.; Yang, F.; Yang, I.; Yin, Y.; Luo, J.J.; Wang, H.; Yang, X.F. Uric acid, hyperuricemia and vascular diseases. Front. Biosci., 2012, 17(2), 656-669.
[http://dx.doi.org/10.2741/3950] [PMID: 22201767]
[8]
Yang, D.; Yuan, J.J.Z.W.Z.C.J.M. The treatment of hyperuricemia and microecological treatment progress. Zhongguo Weishengtaxixue Zazhi. Zhongguo Weishengtaixue Zazhi, 2011, 23(10), 950-955.
[9]
Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: New concepts in diagnosis and management. Postgrad. Med., 2012, 124(6), 98-109.
[http://dx.doi.org/10.3810/pgm.2012.11.2616] [PMID: 23322143]
[10]
Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, 16(2), 400.
[http://dx.doi.org/10.1007/s11926-013-0400-9] [PMID: 24357445]
[11]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[12]
Badve, S.V.; Pascoe, E.M.; Tiku, A.; Boudville, N.; Brown, F.G.; Cass, A.; Clarke, P.; Dalbeth, N.; Day, R.O.; de Zoysa, J.R.J.N.E.J.M.; Douglas, B.; Faull, R.; Harris, D.C.; Hawley, C.M.; Jones, G.R.D.; Kanellis, J.; Palmer, S.C.; Perkovic, V.; Rangan, G.K.; Reidlinger, D.; Robison, L.; Walker, R.J.; Walters, G.; Johnson, D.W. Effects of allopurinol on the progression of chronic kidney disease. N. Engl. J. Med., 2020, 382(26), 2504-2513.
[http://dx.doi.org/10.1056/NEJMoa1915833] [PMID: 32579811]
[13]
Becker, M.A.; Schumacher, H.R.; MacDonald, P.A.; Lloyd, E.; Lademacher, C. Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J. Rheumatol., 2009, 36(6), 1273-1282.
[http://dx.doi.org/10.3899/jrheum.080814] [PMID: 19286847]
[14]
Hashem, H.E. In: Quinazolinone and Quinazoline Derivatives; IntechOpen: London, 2020, p. 41.
[15]
Arora, P.; Arora, V.; Lamba, H.; Wadhwa, D.J.I.J.P.S. Research, importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947.
[16]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[17]
Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M.D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem., 2015, 96, 296-307.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.028] [PMID: 25899334]
[18]
Xu, G-F.; Song, B-A.; Bhadury, P.S.; Yang, S.; Zhang, P-Q.; Jin, L-H.; Xue, W.; Hu, D-Y.; Lu, P. Synthesis and antifungal activity of novel s-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg. Med. Chem., 2007, 15(11), 3768-3774.
[http://dx.doi.org/10.1016/j.bmc.2007.03.037] [PMID: 17412601]
[19]
Chandrika, P.M.; Yakaiah, T.; Rao, A.R.R.; Narsaiah, B.; Reddy, N.C.; Sridhar, V.; Rao, J.V. Synthesis of novel 4,6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. Eur. J. Med. Chem., 2008, 43(4), 846-852.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.010] [PMID: 17689837]
[20]
Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E-H. A Maklad, Y.; N Attia, H.; Al-Salahi, R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules, 2017, 22(7), 1094.
[http://dx.doi.org/10.3390/molecules22071094] [PMID: 28665338]
[21]
Patel, H.U.; Patel, R.S.; Patel, C.N.J.J.A.P.S. Synthesis and antihypertensive activity of some quinazoline derivatives. J. Appl. Pharm. Sci., 2013, 3(3), 171.
[22]
Al-Salahi, R.; Taie, H.A.A.; Bakheit, A.H.; Marzouk, M.; Almehizia, A.A.; Herqash, R.; Abuelizz, H.A.J.P.R. Antioxidant activities and molecular docking of 2-thioxobenzo[g]quinazoline derivatives. Pharmacol. Rep., 2019, 71(4), 695-700.
[http://dx.doi.org/10.1016/j.pharep.2019.04.003] [PMID: 31207430]
[23]
Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K.S.; Machiraju, P.K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B.J.M.C.R.; Pottabathini, N. Design, synthesis, and biological evaluation of quinazoline derivatives as α-glucosidase inhibitors. Med. Chem. Res., 2015, 24(5), 2227-2237.
[http://dx.doi.org/10.1007/s00044-014-1293-5]
[24]
Zafar, H.; Saad, S.M.; Perveen, S. Arshia; Malik, R.; Khan, A.; Khan, K.M.; Choudhary, M.I. 2-Arylquinazolin-4(3H)-ones: Inhibitory activities against xanthine oxidase. Med. Chem., 2016, 12(1), 54-62.
[http://dx.doi.org/10.2174/1573406410666150807111336] [PMID: 26256588]
[25]
Kalckar, H.M. Differential spectrophotometry of purine compounds by means of specific enzymes; determination of adenine compounds. J. Biol. Chem., 1947, 167(2), 445-459.
[http://dx.doi.org/10.1016/S0021-9258(17)30998-5] [PMID: 20285040]
[26]
Zafar, H.; Hayat, M.; Saied, S.; Khan, M.; Salar, U.; Malik, R.; Choudhary, M.I.; Khan, K.M.J.B. Xanthine oxidase inhibitory activity of nicotino/isonicotinohydrazides: A systematic approach from in vitro, in silico to in vivo studies. Bioorg. Med. Chem., 2017, 25(8), 2351-2371.
[http://dx.doi.org/10.1016/j.bmc.2017.02.044] [PMID: 28302506]
[27]
Choudhary, M.I.; Shaikh, M.; Tul-Wahab, A.; Ur-Rahman, A. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One, 2020, 15(7), e0235030.
[http://dx.doi.org/10.1371/journal.pone.0235030] [PMID: 32706783]
[28]
Fatima, I.; Zafar, H.; Khan, K.M.; Saad, S.M.; Javaid, S.; Perveen, S.; Choudhary, M.I. Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles. Bioorg. Chem., 2018, 79, 201-211.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.021] [PMID: 29772470]
[29]
Zafar, H.; Iqbal, S.; Javaid, S.; Khan, K.M.; Choudhary, M.I. Xanthine oxidase inhibitory and molecular docking studies on pyrimidones. Med. Chem., 2018, 14(5), 524-535.
[http://dx.doi.org/10.2174/1573406413666171129224919] [PMID: 29189174]
[30]
Zhang, X.; Perez-Sanchez, H.; Lightstone, F.C. F.J.C.t.i.m.c. A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr. Top. Med. Chem., 2017, 17(14), 1631-1639.
[http://dx.doi.org/10.2174/1568026616666161117112604] [PMID: 27852201]
[31]
Moolchand Thadhani, V.; Khan, A.; Javaid, S.; Shafqat, A.; Choudhary, M.I.J.L.D.D. Discovery, study of binding epitopes by STD-NMR spectroscopy and molecular docking of urease inhibitors from lichens. Lett. Drug Des. Discov., 2016, 13(4), 282-294.
[http://dx.doi.org/10.2174/1570180812666150907204007]
[32]
Mannerström, M.; Toimela, T.; Sarkanen, J.R.; Heinonen, T. Pharmacology, c.; toxicology, Human BJ fibroblasts is an alternative to mouse BALB/c 3T3 cells in in vitro neutral red uptake assay. Basic Clin. Pharmacol. Toxicol., 2017, 121(Suppl. 3), 109-115.
[http://dx.doi.org/10.1111/bcpt.12790] [PMID: 28374970]
[33]
El-Azab, A.S.; Khalil, N.Y.; Abdel-Aziz, A.A-M. Remarkable conversion of 2-Thioxo-2, 3-dihydroquinazolin-4 (1H)-ones into the corresponding quinazoline-2, 4 (1H, 3H)-diones: Spectroscopic analysis and X-ray crystallography. J. Chem., 2021, 2021, 6612177.
[34]
Ansari, S.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Esfahani, E.N.; Biglar, M.; Larijani, B.; Rastegar, H.; Hamedifar, H.; Mahdavi, M.; Tas, R. Design, synthesis, in vitro and in silico biological assays of new quinazolinone-2-thio-metronidazole derivatives. J. Mol. Struct., 2021, 1244, 130889.
[35]
Yan, G.; Zekarias, B.L.; Li, X.; Jaffett, V.A.; Guzei, I.A.; Golden, J.E. Divergent 2-Chloroquinazolin-4 (3H)-one rearrangement: Twisted-cyclic guanidine formation or ring-fused N-Acylguanidines via a domino process. In: Chemistry (Weinheim an der Bergstrasse, Germany,; , 2020; 26, p. (11)2486.
[36]
Gupta, C.M.; Bhaduri, A.P.; Khanna, N.M. Drugs acting on the central nervous system. Syntheses of substituted quinazolones and quinazolines and triazepino- and triazocinoquinazolones. J. Med. Chem., 1968, 11(2), 392-395.
[http://dx.doi.org/10.1021/jm00308a057] [PMID: 5663640]
[37]
Narendhar, B.; Chitra, K.; Alagarsamy, V. Synthesis of new 1-substituted-3-(3-(2-chlorophenyl)-4-Oxo-3, 4-dihydrobenzo-pyrimidin-2-ylamino) isothioureas as anti-HIV and antibacterial agents. Pharm. Chem. J., 2021, 55(1), 54-59.
[http://dx.doi.org/10.1007/s11094-021-02371-7]
[38]
Wang, H-X.; Liu, H-Y.; Li, W.; Zhang, S.; Wu, Z.; Li, X.; Li, C-W.; Liu, Y-M.; Chen, B-Q. Design, synthesis, antiproliferative and antibacterial evaluation of quinazolinone derivatives. Med. Chem. Res., 2019, 28(2), 203-214.
[http://dx.doi.org/10.1007/s00044-018-2276-8]
[39]
Zhang, H-J.; Wang, S-B.; Quan, Z-S. Synthesis and antidepressant activities of 4-(substituted-phenyl)tetrazolo[1,5-a]quinazolin-5(4H)-ones and their derivatives. Mol. Divers., 2015, 19(4), 817-828.
[http://dx.doi.org/10.1007/s11030-015-9623-1] [PMID: 26251313]
[40]
[https://www.aldlab.com/en/productind.html
[41]
Gil, A.M.; Ayuso-Gontan, C.B.G.; García Fernández, A.M.; Pérez Fernández, D.I. S-substituted quinazolines and their therapeutic applications for the treatment of diseases mediated by PDE7. Quinazolinas S-sustituidas y sus aplicaciones terapéuticas para el tratamiento de enfermedades mediadas por PDE7. U.S. Patent 9796687B2, October 24, 2017.
[42]
Mahdy, H.A.; Ibrahim, M.K.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; El-Gamal, K.M.A.; El-Sharkawy, A.; Elhendawy, M.A.; Radwan, M.M.; Elsohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94, 103422.
[http://dx.doi.org/10.1016/j.bioorg.2019.103422] [PMID: 31812261]
[43]
Markosyan, A.; Hayrapetyan, K.; Gabrielyan, S.; Shirinyan, V.; Mamyan, S.; Avakimyan, J.; Stepanyan, G. Some transformations of 2-(chloromethyl)-5, 5-dimethyl-5, 6-dihydrobenzo [h] quinazolin-4 (3 H)-one. Russ. J. Org. Chem., 2018, 54(4), 606-613.
[http://dx.doi.org/10.1134/S1070428018040152]
[44]
Garin, J.; Guillen, C.; Melendez, E.; Merchan, F.L.; Orduna, J. N-Halosuccinimide/sulfuric acid: An efficient reagent for the synthesis of fused benzothiazoles. Heterocycles (Sendai), 1987, 26(9), 2371-2379.
[http://dx.doi.org/10.3987/R-1987-09-2371]
[45]
Németh, A.G. Keserű G.M.; Ábrányi-Balogh, P. A novel three-component reaction between isocyanides, alcohols or thiols and elemental sulfur: A mild, catalyst-free approach towards O-thiocarbamates and dithiocarbamates. Beilstein J. Org. Chem., 2019, 15(1), 1523-1533.
[http://dx.doi.org/10.3762/bjoc.15.155] [PMID: 31354871]
[46]
Banerjee, R.; Lakhan, R.; Shukla, B. Simple preparation of 1-Methyl-3-aryl-2-thio-2, 4 (1H, 3H)-quinazolinediones as potential antimicrobial agents. ChemInform, 1999, 30(8) no-no.
[47]
Zhou, Z.W.; Jia, F.C.; Xu, C.; Jiang, S.F.; Wu, Y.D.; Wu, A.X. Temperature-controlled base‐promoted cyclization for the synthesis of 2-amino-4H-benzo [d][1, 3] thiazin-4-ones and 2-thioxo-4 (3H)-quinazolinones. Asian J. Org. Chem., 2017, 6(12), 1773-1777.
[http://dx.doi.org/10.1002/ajoc.201700443]