Letters in Drug Design & Discovery

Author(s): Xinxin Liu* and Yabo Wang

DOI: 10.2174/1570180819666220619125742

Elucidating the Molecular Targets and Mechanisms of Chlorogenic Acid Against Alzheimer’s Disease via Network Pharmacology and Molecular Docking

Page: [1329 - 1342] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Chlorogenic acid (CGA), a polyphenolic substance extracted from many traditional Chinese medicines, exerts a mitigative effect in dementia, including Alzheimer’s disease (AD). However, the pathological mechanisms of CGA against AD remain obscure.

Objective: To elucidate the core targets, functional characteristics, and underlying mechanisms of CGA against AD using network pharmacology approaches and molecular docking technologies.

Methods: GEO database was used to identify the differentially expressed genes (DEGs) in AD. PharmMpper, TargetNet, and SwissTargetPrediction predicted the CGA-related targets. STRING and Cytoscape were employed to construct and analyze the PPI network. Moreover, the Metascape platform was used to perform the GO biological processes and KEGG pathways enrichment. Molecular docking was performed using Autodock Vina software.

Results: A total of 5437 targets related to AD were identified with |log2Fold Change (FC)| ≥ 1 and P < 0.05. Based on public databases, 193 putative target genes of CGA were screened. Using the Venn diagram, we found 137 co-targets between CGA and AD. According to the PPI network, 23 core targets for CGA to treat AD were obtained. KEGG enrichment displayed that the PI3K-Akt signaling pathway, MAPK signaling pathway, apoptosis, and NOD-like receptor signaling pathway were several important signaling pathways involved in CGA against AD. SRC, EGFR, HSP90AA1, MAPK1, RHOA, and PIK3R1 were hub targets associated with the activities of CGA against AD. Molecular docking analysis revealed a good binding affinity between CGA and these targets through hydrogen bonds.

Conclusion: CGA might exert therapeutic effects in AD by regulating multiple targets and signaling pathways. However, further in vitro and in vivo experiments are required to thoroughly confirm the detailed targets and mechanisms of CGA against AD.

Keywords: Network pharmacology, chlorogenic acid, Alzheimer’s disease, therapeutic targets, molecular docking, receptor.

Graphical Abstract

[1]
Alzheimer’s, A. Alzheimer’s disease facts and figures. Alzheimers Dement., 2019, 15(3), 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[2]
Patterson, C. Alzheimer’s disease international. 2018. Available from: https://www.alzint.org/resource/world-alzheimer-report-2018/
[3]
Zvěřová, M. Clinical aspects of Alzheimer’s disease. Clin. Biochem., 2019, 72, 3-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.015] [PMID: 31034802]
[4]
Kent, S.A.; Spires-Jones, T.L.; Durrant, C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol., 2020, 140(4), 417-447.
[http://dx.doi.org/10.1007/s00401-020-02196-w] [PMID: 32728795]
[5]
Rojas-Gutierrez, E.; Muñoz-Arenas, G.; Treviño, S.; Espinosa, B.; Chavez, R.; Rojas, K.; Flores, G.; Díaz, A.; Guevara, J. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse, 2017, 71(10), e21990.
[http://dx.doi.org/10.1002/syn.21990] [PMID: 28650104]
[6]
Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci., 2020, 256, 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[7]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[8]
Nisticò, R.; Borg, J.J. Aducanumab for Alzheimer’s disease: A regulatory perspective. Pharmacol. Res., 2021, 171, 105754.
[http://dx.doi.org/10.1016/j.phrs.2021.105754] [PMID: 34217830]
[9]
Tagliavini, F.; Tiraboschi, P.; Federico, A. Alzheimer’s disease: The controversial approval of Aducanumab. Neurol. Sci., 2021, 42(8), 3069-3070.
[http://dx.doi.org/10.1007/s10072-021-05497-4] [PMID: 34322762]
[10]
Mohd Sairazi, N.S.; Sirajudeen, K.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 6565396.
[http://dx.doi.org/10.1155/2020/6565396] [PMID: 32148547]
[11]
Habtemariam, S. Natural products in alzheimer’s disease therapy: Would old therapeutic approaches fix the broken promise of modern medicines? Molecules, 2019, 24(8), 1519.
[http://dx.doi.org/10.3390/molecules24081519] [PMID: 30999702]
[12]
Wianowska, D.; Gil, M. Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytochem. Rev., 2019, 18(1), 273-302.
[http://dx.doi.org/10.1007/s11101-018-9592-y]
[13]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D. FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[14]
Saitou, K.; Ochiai, R.; Kozuma, K.; Sato, H.; Koikeda, T.; Osaki, N.; Katsuragi, Y. Effect of chlorogenic acids on cognitive function: A randomized, double-blind, placebo-controlled trial. Nutrients, 2018, 10(10), 1337.
[http://dx.doi.org/10.3390/nu10101337] [PMID: 30241302]
[15]
Kato, M.; Ochiai, R.; Kozuma, K.; Sato, H.; Katsuragi, Y. Effect of chlorogenic acid intake on cognitive function in the elderly: A pilot study. Evid. Based Complement. Alternat. Med., 2018, 2018, 8608497.
[http://dx.doi.org/10.1155/2018/8608497] [PMID: 29707036]
[16]
Ochiai, R.; Saitou, K.; Suzukamo, C.; Osaki, N.; Asada, T. Effect of chlorogenic acids on cognitive function in mild cognitive impairment: A randomized controlled crossover trial. J. Alzheimers Dis., 2019, 72(4), 1209-1216.
[http://dx.doi.org/10.3233/JAD-190757] [PMID: 31683483]
[17]
Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic acid alleviates Aβ25-35-Induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des. Devel. Ther., 2020, 14, 1705-1716.
[http://dx.doi.org/10.2147/DDDT.S235969] [PMID: 32440096]
[18]
Shi, M.; Sun, F.; Wang, Y.; Kang, J.; Zhang, S.; Li, H. CGA restrains the apoptosis of Aβ25-35-induced hippocampal neurons. Int. J. Neurosci., 2020, 130(7), 700-707.
[http://dx.doi.org/10.1080/00207454.2019.1702547] [PMID: 31902262]
[19]
Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048.
[http://dx.doi.org/10.1002/minf.201700048] [PMID: 28692140]
[20]
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep., 2015, 32(8), 1249-1266.
[http://dx.doi.org/10.1039/C5NP00005J] [PMID: 26030402]
[21]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[22]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[23]
Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 2016, 30(5), 413-424.
[http://dx.doi.org/10.1007/s10822-016-9915-2] [PMID: 27167132]
[24]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[25]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[26]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[27]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[28]
Kumar, M.; Bansal, N. Implications of phosphoinositide 3-Kinase-Akt (PI3K-Akt) pathway in the pathogenesis of alzheimer’s disease. Mol. Neurobiol., 2022, 59(1), 354-385.
[http://dx.doi.org/10.1007/s12035-021-02611-7] [PMID: 34699027]
[29]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of alzheimer’s disease. Front. Pharmacol., 2018, 9, 548.
[http://dx.doi.org/10.3389/fphar.2018.00548] [PMID: 29896105]
[30]
Amato, A.; Terzo, S.; Mulè, F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on alzheimer’s disease. Antioxidants, 2019, 8(12), 608.
[http://dx.doi.org/10.3390/antiox8120608] [PMID: 31801234]
[31]
Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 2015, 8(1), 16.
[http://dx.doi.org/10.3390/nu8010016] [PMID: 26712785]
[32]
Fernandes, M.Y.D.; Dobrachinski, F.; Silva, H.B.; Lopes, J.P.; Gonçalves, F.Q.; Soares, F.A.A.; Porciúncula, L.O.; Andrade, G.M.; Cunha, R.A.; Tomé, A.R. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Sci. Rep., 2021, 11(1), 10488.
[http://dx.doi.org/10.1038/s41598-021-89964-0] [PMID: 34006978]
[33]
Razani, E.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Zoghi, A.; Shanaki-Bavarsad, M.; Bashash, D. The PI3K/Akt signaling axis in Alzheimer’s disease: A valuable target to stimulate or suppress? Cell Stress Chaperones, 2021, 26(6), 871-887.
[http://dx.doi.org/10.1007/s12192-021-01231-3] [PMID: 34386944]
[34]
Rai, S.N.; Dilnashin, H.; Birla, H.; Singh, S.S.; Zahra, W.; Rathore, A.S.; Singh, B.K.; Singh, S.P. The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox. Res., 2019, 35(3), 775-795.
[http://dx.doi.org/10.1007/s12640-019-0003-y] [PMID: 30707354]
[35]
Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease. Front. Pharmacol., 2021, 12, 648636.
[http://dx.doi.org/10.3389/fphar.2021.648636] [PMID: 33935751]
[36]
Han, D.; Chen, W.; Gu, X.; Shan, R.; Zou, J.; Liu, G.; Shahid, M.; Gao, J.; Han, B. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Oncotarget, 2017, 8(9), 14680-14692.
[http://dx.doi.org/10.18632/oncotarget.14747] [PMID: 28122344]
[37]
Vallejo-Díaz, J.; Chagoyen, M.; Olazabal-Morán, M.; González-García, A.; Carrera, A.C. The opposing roles of PIK3R1/p85α and PIK3R2/p85β in cancer. Trends Cancer, 2019, 5(4), 233-244.
[http://dx.doi.org/10.1016/j.trecan.2019.02.009] [PMID: 30961830]
[38]
Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta, 2011, 1813(9), 1619-1633.
[http://dx.doi.org/10.1016/j.bbamcr.2010.12.012] [PMID: 21167873]
[39]
Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol., 2015, 89(6), 867-882.
[http://dx.doi.org/10.1007/s00204-015-1472-2] [PMID: 25690731]
[40]
Lee, J.K.; Kim, N.J. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of alzheimer’s disease. Molecules, 2017, 22(8), 1287.
[http://dx.doi.org/10.3390/molecules22081287] [PMID: 28767069]
[41]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[42]
Sun, J.; Nan, G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int. J. Mol. Med., 2017, 39(6), 1338-1346. Review
[http://dx.doi.org/10.3892/ijmm.2017.2962] [PMID: 28440493]
[43]
Gao, W.; Wang, C.; Yu, L.; Sheng, T.; Wu, Z.; Wang, X.; Zhang, D.; Lin, Y.; Gong, Y. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res. Int., 2019, 2019, 6769789.
[http://dx.doi.org/10.1155/2019/6769789] [PMID: 31139644]
[44]
Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem. Res., 2014, 39(12), 2301-2312.
[http://dx.doi.org/10.1007/s11064-014-1454-4] [PMID: 25322820]
[45]
Kim, Y.K.; Shin, J-S.; Nahm, M.H. NOD-Like receptors in infection, immunity, and diseases. Yonsei Med. J., 2016, 57(1), 5-14.
[http://dx.doi.org/10.3349/ymj.2016.57.1.5] [PMID: 26632377]
[46]
Kong, X.; Yuan, Z.; Cheng, J. The function of NOD-like receptors in central nervous system diseases. J. Neurosci. Res., 2017, 95(8), 1565-1573.
[http://dx.doi.org/10.1002/jnr.24004] [PMID: 28029680]
[47]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[48]
Romano, R.; Bucci, C. Role of EGFR in the nervous system. Cells, 2020, 9(8), 1887.
[http://dx.doi.org/10.3390/cells9081887] [PMID: 32806510]
[49]
Mansour, H.M.; Fawzy, H.M.; El-Khatib, A.S.; Khattab, M.M. Potential repositioning of anti-cancer EGFR inhibitors in alzheimer’s disease: Current perspectives and challenging prospects. Neuroscience, 2021, 469, 191-196.
[http://dx.doi.org/10.1016/j.neuroscience.2021.06.013] [PMID: 34139302]
[50]
Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; Holmans, P.A.; Boland, A.; Damotte, V.; van der Lee, S.J.; Costa, M.R.; Kuulasmaa, T.; Yang, Q.; de Rojas, I.; Bis, J.C.; Yaqub, A.; Prokic, I.; Chapuis, J.; Ahmad, S.; Giedraitis, V.; Aarsland, D.; Garcia-Gonzalez, P.; Abdelnour, C.; Alarcón-Martín, E.; Alcolea, D.; Alegret, M.; Alvarez, I.; Álvarez, V.; Armstrong, N.J.; Tsolaki, A.; Antúnez, C.; Appollonio, I.; Arcaro, M.; Archetti, S.; Pastor, A.A.; Arosio, B.; Athanasiu, L.; Bailly, H.; Banaj, N.; Baquero, M.; Barral, S.; Beiser, A.; Pastor, A.B.; Below, J.E.; Benchek, P.; Benussi, L.; Berr, C.; Besse, C.; Bessi, V.; Binetti, G.; Bizarro, A.; Blesa, R.; Boada, M.; Boerwinkle, E.; Borroni, B.; Boschi, S.; Bossù, P.; Bråthen, G.; Bressler, J.; Bresner, C.; Brodaty, H.; Brookes, K.J.; Brusco, L.I.; Buiza-Rueda, D.; Bûrger, K.; Burholt, V.; Bush, W.S.; Calero, M.; Cantwell, L.B.; Chene, G.; Chung, J.; Cuccaro, M.L.; Carracedo, Á.; Cecchetti, R.; Cervera-Carles, L.; Charbonnier, C.; Chen, H.H.; Chillotti, C.; Ciccone, S.; Claassen, J.A.H.R.; Clark, C.; Conti, E.; Corma-Gómez, A.; Costantini, E.; Custodero, C.; Daian, D.; Dalmasso, M.C.; Daniele, A.; Dardiotis, E.; Dartigues, J.F.; de Deyn, P.P.; de Paiva Lopes, K.; de Witte, L.D.; Debette, S.; Deckert, J.; Del Ser, T.; Denning, N.; DeStefano, A.; Dichgans, M.; Diehl-Schmid, J.; Diez-Fairen, M.; Rossi, P.D.; Djurovic, S.; Duron, E.; Düzel, E.; Dufouil, C.; Eiriksdottir, G.; Engelborghs, S.; Escott-Price, V.; Espinosa, A.; Ewers, M.; Faber, K.M.; Fabrizio, T.; Nielsen, S.F.; Fardo, D.W.; Farotti, L.; Fenoglio, C.; Fernández-Fuertes, M.; Ferrari, R.; Ferreira, C.B.; Ferri, E.; Fin, B.; Fischer, P.; Fladby, T.; Fließbach, K.; Fongang, B.; Fornage, M.; Fortea, J.; Foroud, T.M.; Fostinelli, S.; Fox, N.C.; Franco-Macías, E.; Bullido, M.J.; Frank-García, A.; Froelich, L.; Fulton-Howard, B.; Galimberti, D.; García-Alberca, J.M.; García-González, P.; Garcia-Madrona, S.; Garcia-Ribas, G.; Ghidoni, R.; Giegling, I.; Giorgio, G.; Goate, A.M.; Goldhardt, O.; Gomez-Fonseca, D.; González-Pérez, A.; Graff, C.; Grande, G.; Green, E.; Grimmer, T.; Grünblatt, E.; Grunin, M.; Gudnason, V.; Guetta-Baranes, T.; Haapasalo, A.; Hadjigeorgiou, G.; Haines, J.L.; Hamilton-Nelson, K.L.; Hampel, H.; Hanon, O.; Hardy, J.; Hartmann, A.M.; Hausner, L.; Harwood, J.; Heilmann-Heimbach, S.; Helisalmi, S.; Heneka, M.T.; Hernández, I.; Herrmann, M.J.; Hoffmann, P.; Holmes, C.; Holstege, H.; Vilas, R.H.; Hulsman, M.; Humphrey, J.; Biessels, G.J.; Jian, X.; Johansson, C.; Jun, G.R.; Kastumata, Y.; Kauwe, J.; Kehoe, P.G.; Kilander, L.; Ståhlbom, A.K.; Kivipelto, M.; Koivisto, A.; Kornhuber, J.; Kosmidis, M.H.; Kukull, W.A.; Kuksa, P.P.; Kunkle, B.W.; Kuzma, A.B.; Lage, C.; Laukka, E.J.; Launer, L.; Lauria, A.; Lee, C.Y.; Lehtisalo, J.; Lerch, O.; Lleó, A.; Longstreth, W., Jr; Lopez, O.; de Munain, A.L.; Love, S.; Löwemark, M.; Luckcuck, L.; Lunetta, K.L.; Ma, Y.; Macías, J.; MacLeod, C.A.; Maier, W.; Mangialasche, F.; Spallazzi, M.; Marquié, M.; Marshall, R.; Martin, E.R.; Montes, A.M.; Rodríguez, C.M.; Masullo, C.; Mayeux, R.; Mead, S.; Mecocci, P.; Medina, M.; Meggy, A.; Mehrabian, S.; Mendoza, S.; Menéndez-González, M.; Mir, P.; Moebus, S.; Mol, M.; Molina-Porcel, L.; Montrreal, L.; Morelli, L.; Moreno, F.; Morgan, K.; Mosley, T.; Nöthen, M.M.; Muchnik, C.; Mukherjee, S.; Nacmias, B.; Ngandu, T.; Nicolas, G.; Nordestgaard, B.G.; Olaso, R.; Orellana, A.; Orsini, M.; Ortega, G.; Padovani, A.; Paolo, C.; Papenberg, G.; Parnetti, L.; Pasquier, F.; Pastor, P.; Peloso, G.; Pérez-Cordón, A.; Pérez-Tur, J.; Pericard, P.; Peters, O.; Pijnenburg, Y.A.L.; Pineda, J.A.; Piñol-Ripoll, G.; Pisanu, C.; Polak, T.; Popp, J.; Posthuma, D.; Priller, J.; Puerta, R.; Quenez, O.; Quintela, I.; Thomassen, J.Q.; Rábano, A.; Rainero, I.; Rajabli, F.; Ramakers, I.; Real, L.M.; Reinders, M.J.T.; Reitz, C.; Reyes-Dumeyer, D.; Ridge, P.; Riedel-Heller, S.; Riederer, P.; Roberto, N.; Rodriguez-Rodriguez, E.; Rongve, A.; Allende, I.R.; Rosende-Roca, M.; Royo, J.L.; Rubino, E.; Rujescu, D.; Sáez, M.E.; Sakka, P.; Saltvedt, I.; Sanabria, Á.; Sánchez-Arjona, M.B.; Sanchez-Garcia, F.; Juan, P.S.; Sánchez-Valle, R.; Sando, S.B.; Sarnowski, C.; Satizabal, C.L.; Scamosci, M.; Scarmeas, N.; Scarpini, E.; Scheltens, P.; Scherbaum, N.; Scherer, M.; Schmid, M.; Schneider, A.; Schott, J.M.; Selbæk, G.; Seripa, D.; Serrano, M.; Sha, J.; Shadrin, A.A.; Skrobot, O.; Slifer, S.; Snijders, G.J.L.; Soininen, H.; Solfrizzi, V.; Solomon, A.; Song, Y.; Sorbi, S.; Sotolongo-Grau, O.; Spalletta, G.; Spottke, A.; Squassina, A.; Stordal, E.; Tartan, J.P.; Tárraga, L.; Tesí, N.; Thalamuthu, A.; Thomas, T.; Tosto, G.; Traykov, L.; Tremolizzo, L.; Tybjærg-Hansen, A.; Uitterlinden, A.; Ullgren, A.; Ulstein, I.; Valero, S.; Valladares, O.; Broeckhoven, C.V.; Vance, J.; Vardarajan, B.N.; van der Lugt, A.; Dongen, J.V.; van Rooij, J.; van Swieten, J.; Vandenberghe, R.; Verhey, F.; Vidal, J.S.; Vogelgsang, J.; Vyhnalek, M.; Wagner, M.; Wallon, D.; Wang, L.S.; Wang, R.; Weinhold, L.; Wiltfang, J.; Windle, G.; Woods, B.; Yannakoulia, M.; Zare, H.; Zhao, Y.; Zhang, X.; Zhu, C.; Zulaica, M.; Farrer, L.A.; Psaty, B.M.; Ghanbari, M.; Raj, T.; Sachdev, P.; Mather, K.; Jessen, F.; Ikram, M.A.; de Mendonça, A.; Hort, J.; Tsolaki, M.; Pericak-Vance, M.A.; Amouyel, P.; Williams, J.; Frikke-Schmidt, R.; Clarimon, J.; Deleuze, J.F.; Rossi, G.; Seshadri, S.; Andreassen, O.A.; Ingelsson, M.; Hiltunen, M.; Sleegers, K.; Schellenberg, G.D.; van Duijn, C.M.; Sims, R.; van der Flier, W.M.; Ruiz, A.; Ramirez, A.; Lambert, J.C. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet., 2022, 54(4), 412-436.
[http://dx.doi.org/10.1038/s41588-022-01024-z] [PMID: 35379992]
[51]
Ou, J.R.; Tan, M.S.; Xie, A.M.; Yu, J.T.; Tan, L. Heat shock protein 90 in Alzheimer’s disease. BioMed Res. Int., 2014, 2014, 796869.
[http://dx.doi.org/10.1155/2014/796869] [PMID: 25374890]
[52]
Dhawan, G.; Combs, C.K. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J. Neuroinflammation, 2012, 9(1), 117.
[http://dx.doi.org/10.1186/1742-2094-9-117] [PMID: 22673542]
[53]
Raftopoulou, M.; Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol., 2004, 265(1), 23-32.
[http://dx.doi.org/10.1016/j.ydbio.2003.06.003] [PMID: 14697350]
[54]
Zhang, X.; Ye, P.; Wang, D.; Liu, Y.; Cao, L.; Wang, Y.; Xu, Y.; Zhu, C. Involvement of RhoA/ROCK signaling in Aβ-Induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells. Cell. Mol. Neurobiol., 2019, 39(5), 637-650.
[http://dx.doi.org/10.1007/s10571-019-00668-6] [PMID: 30852720]
[55]
Cai, R.; Wang, Y.; Huang, Z.; Zou, Q.; Pu, Y.; Yu, C.; Cai, Z. Role of RhoA/ROCK signaling in Alzheimer’s disease. Behav. Brain Res., 2021, 414, 113481.
[http://dx.doi.org/10.1016/j.bbr.2021.113481] [PMID: 34302876]