Multi-Targeted Molecular Docking and Drug-Likeness Evaluation of some Nitrogen Heterocyclic Compounds Targeting Proteins Involved in the Development of COVID-19

Page: [297 - 309] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: The severe acute respiratory syndrome coronavirus-2 is causing a disaster through coronavirus disease-19 (COVID-19), affecting the world population with a high mortality rate. Although numerous scientific efforts have been made, we do not have any specific drug for COVID-19 treatment.

Objective: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.

Methods: We have performed docking study using PyRx software, and Discovery Studio Visualizer was used to visualise the molecular interactions. The designed nitrogen heterocyclic analogues were checked for Lipinski’s rule of five, Veber's Law and Adsorption, Distribution, Metabolism, and Excretion (ADME) threshold. After obtaining the docking results of existing nitrogen heterocyclic drugs, we modified the selected drugs to get molecules with better affinity against SARS-CoV-2.

Results: Hydroxychloroquine bound to RdRp, spike protein, PLPro and Mpro at -5.2, -5.1, -6.7 and -6.0 kcal/mol, while remdesivir bound to RdRp, spike protein, PLPro, and Mpro at -6.1, -6.9, -6.4 and -6.9 kcal/mol, respectively. Lomefloxacin bound to RdRp, spike protein, PLPro and Pro at -6.4, -6.6, -7.2 and -6.9 kcal/mol. ADME studies of all these compounds indicated lipophilicity and high gastro intestine absorbability. The modified drug structures possess better binding efficacy towards at least one target than their parent compounds.

Conclusion: The outcome reveals that the designed nitrogen heterocyclics could contribute to developing the potent inhibitory drug SARS-CoV-2 with strong multi-targeted inhibition ability and reactivity

Keywords: Coronavirus disease-19, nitrogen heterocyclics, molecular docking, SARS-CoV-2, multitarget, pneumonia outbreak.

Graphical Abstract

[1]
NIH COVID-19, MERS & SARS. Available from: https://www.niaid.nih.gov/diseases-conditions/ (Accessed on Oct 13, 2021).
[2]
FDA. Comirnaty and Pfizer-BioNTech COVID-19 vaccine. Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine (Accessed on Oct 13, 2021)
[3]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[4]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[5]
Hall, D.C., Jr; Ji, H-F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, 35, 101646.
[http://dx.doi.org/10.1016/j.tmaid.2020.101646] [PMID: 32294562]
[6]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[7]
Hathout, R.M.; Abdelhamid, S.G.; Metwally, A.A. Chloroquine and hydroxychloroquine for combating COVID-19: Investigating efficacy and hypothesizing new formulations using Bio/chemo-informatics tools. Inform. Med. Unlocked, 2020, 21, 100446.
[http://dx.doi.org/10.1016/j.imu.2020.100446] [PMID: 33052313]
[8]
Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ., 2020, 728, 138820.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138820] [PMID: 32334164]
[9]
Zhang, X.L.; Li, Z.M.; Ye, J.T.; Lu, J.; Ye, L.L.; Zhang, C.X.; Liu, P.Q.; Duan, D.D. Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol. Sin., 2020, 41(11), 1377-1386.
[http://dx.doi.org/10.1038/s41401-020-00519-x] [PMID: 32968208]
[10]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[11]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimised dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[12]
Fox, R.I. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin. Arthritis Rheum., 1993, 23(2)(Suppl. 1), 82-91.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5] [PMID: 8278823]
[13]
MIMS, Malaysia; Remdesivir. Available from: https://www.mims.com/ (Accessed on 21st August 2021)
[14]
Malin, J.J.; Suárez, I.; Priesner, V.; Fätkenheuer, G.; Rybniker, J. Remdesivir against COVID-19 and other viral diseases. Clin. Microbiol. Rev., 2020, 34(1), 34.
[http://dx.doi.org/10.1128/CMR.00162-20] [PMID: 33055231]
[15]
Amin, M.; Abbas, G. Docking study of chloroquine and hydroxychloroquine interaction with RNA binding domain of nucleocapsid phospho-protein - an in silico insight into the comparative efficacy of repurposing antiviral drugs. J. Biomol. Struct. Dyn., 2021, 39(12), 4243-4255.
[http://dx.doi.org/10.1080/07391102.2020.1775703] [PMID: 32469265]
[16]
Baby, K.; Maity, S.; Mehta, C.H.; Suresh, A.; Nayak, U.Y.; Nayak, Y. Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000 Res., 2020, 9, 1166.
[http://dx.doi.org/10.12688/f1000research.26359.1] [PMID: 33204411]
[17]
Alexpandi, R.; De Mesquita, J.F.; Pandian, S.K.; Ravi, A.V. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Front. Microbiol., 2020, 11, 1796.
[http://dx.doi.org/10.3389/fmicb.2020.01796] [PMID: 32793181]
[18]
Acharya, B. Amodiaquine as COVID-19 Mpro inhibitor: A theoretical study. ChemRxiv, 2020. Preprint
[http://dx.doi.org/10.26434/chemrxiv.12555137.v1]
[19]
Patnin, S.; Makarasen, A.; Vijitphan, P.; Baicharoen, A.; Chaivisuthangkura, A.; Kuno, M.; Techasakul, S. Computational screening of phenylaminophenoxyquinoline derivatives against the main protease of SARS-CoV-2 using molecular docking and the ONIOM method. Molecules, 2022, 27(6), 1793.
[http://dx.doi.org/10.3390/molecules27061793] [PMID: 35335157]
[20]
Achutha, A.S.; Pushpa, V.L.; Suchitra, S. Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J. Proteome Res., 2020, 19(11), 4706-4717.
[http://dx.doi.org/10.1021/acs.jproteome.0c00683] [PMID: 32960061]
[21]
Ali, A.; Sepay, N.; Afzal, M.; Sepay, N.; Alarifi, A.; Shahid, M.; Ahmad, M. Molecular designing, crystal structure determination and in silico screening of copper(II) complexes bearing 8-hydroxyquinoline derivatives as anti-COVID-19. Bioorg. Chem., 2021, 110, 104772.
[http://dx.doi.org/10.1016/j.bioorg.2021.104772] [PMID: 33676041]
[22]
Baildya, N.; Ghosh, N.N.; Chattopadhyay, A.P. Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. J. Mol. Struct., 2020, 1219, 128595.
[http://dx.doi.org/10.1016/j.molstruc.2020.128595] [PMID: 32834108]
[23]
Cel K, I.; Onay-Bes Kc A.; Ayhan-Kilcig L, G. Approach to the mechanism of action of hydroxychloroquine on SARS-CoV-2: A molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(15), 5792-5798.
[http://dx.doi.org/10.1080/07391102.2020.1792993] [PMID: 32677545]
[24]
Lestari, K.; Sittorus, T.; Instiaty, M.S.L. Molecular docking of quinine, chloroquine and hydroxychloroquine to Angiotensin Converting Enzyme 2 (ACE2) receptor for discovering new potential COVID-19 antidote. J. Adv. Pharm. Educ. Res., 2020, 10, 1-4.
[25]
Hosseini, M.; Chen, W.; Xiao, D.; Wang, C. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis. Clin. Med., 2021, 4(1), 1-16.
[http://dx.doi.org/10.1093/pcmedi/pbab001] [PMID: 33842834]
[26]
Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[27]
Marinho, E.M.; Batista de Andrade Neto, J.; Silva, J.; Rocha da Silva, C.; Cavalcanti, B.C.; Marinho, E.S.; Nobre Júnior, H.V. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog., 2020, 148, 104365.
[http://dx.doi.org/10.1016/j.micpath.2020.104365] [PMID: 32619669]
[28]
Yañez, O.; Osorio, M.I.; Uriarte, E.; Areche, C.; Tiznado, W.; Pérez-Donoso, J.M.; García-Beltrán, O.; González-Nilo, F. In silico study of coumarins and quinolines derivatives as potent inhibitors of SARS-CoV-2 main protease. Front Chem., 2021, 8, 595097.
[http://dx.doi.org/10.3389/fchem.2020.595097] [PMID: 33614592]
[29]
Nejabat, M.; Ghodsi, R.; Hadizadeh, F. Coumarins and quinolones as effective multiple targeted agents versus COVID-19: An in-silico study. Med. Chem., 2022, 18(2), 220-237.
[http://dx.doi.org/10.2174/1573406417666210208223924] [PMID: 33563156]
[30]
Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M.J.; Macip, G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-Vallvé, S. Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int. J. Mol. Sci., 2020, 21(11), 3793.
[http://dx.doi.org/10.3390/ijms21113793] [PMID: 32471205]
[31]
Marciniec, K.; Beberok, A. Pęcak, P.; Boryczka, S.; Wrześniok, D. Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: Preliminary in silico analysis. Pharmacol. Rep., 2020, 72(6), 1553-1561.
[http://dx.doi.org/10.1007/s43440-020-00169-0] [PMID: 33063271]
[32]
Skariyachan, S.; Gopal, D.; Chakrabarti, S.; Kempanna, P.; Uttarkar, A.; Muddebihalkar, A.G.; Niranjan, V. Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Comput. Biol. Med., 2020, 126, 104054.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104054] [PMID: 33074111]
[33]
Abdulfatai, U.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Molecular docking analysis of chloroquine and hydroxychloroquine and design of anti-SARS-CoV-2 protease inhibitor. Mod. Appl. Sci., 2020, 14(10), 52-58.
[http://dx.doi.org/10.5539/mas.v14n10p52]
[34]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[35]
Adeniji, S.E.; Arthur, D.E.; Oluwaseye, A. Computational modeling of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent anti-diabetic agent against TGR5 receptor. J. King Saud Univ. Sci., 2020, 32(1), 102-115.
[http://dx.doi.org/10.1016/j.jksus.2018.03.007]
[36]
Vianna, C.P.; de Azevedo, W.F., Jr Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J. Mol. Model., 2012, 18(2), 755-764.
[http://dx.doi.org/10.1007/s00894-011-1113-5] [PMID: 21594693]
[37]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[38]
Zhang, X.Y.; Huang, H.J.; Zhuang, D.L.; Nasser, M.I.; Yang, M.H.; Zhu, P.; Zhao, M.Y. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect. Dis. Poverty, 2020, 9(1), 99.
[http://dx.doi.org/10.1186/s40249-020-00691-6] [PMID: 32690096]
[39]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[40]
Saxena, S.K.; Kumar, S.; Maurya, V.K.; Sharma, R.; Dandu, H.R.; Bhatt, M.L.B. Current insight into the novel Coronavirus disease 2019 (COVID-19). In: Saxena, S.K.; Ed.Medical Virology: From Pathogenesis to Disease Control. Springer Singapore: Singapore; , 2020, pp. 1-8.
[41]
Zhang, L.; Liu, J.; Cao, R.; Xu, M.; Wu, Y.; Shang, W.; Wang, X.; Zhang, H.; Jiang, X.; Sun, Y.; Hu, H.; Li, Y.; Zou, G.; Zhang, M.; Zhao, L.; Li, W.; Guo, X.; Zhuang, X.; Yang, X.L.; Shi, Z.L.; Deng, F.; Hu, Z.; Xiao, G.; Wang, M.; Zhong, W. Comparative antiviral efficacy of viral protease inhibitors against the novel SARS-CoV-2 in vitro. Virol. Sin., 2020, 35(6), 776-784.
[http://dx.doi.org/10.1007/s12250-020-00288-1] [PMID: 32910347]
[42]
Li, D.; Luan, J.; Zhang, L. Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochem. Biophys. Res. Commun., 2021, 538, 72-79.
[http://dx.doi.org/10.1016/j.bbrc.2020.11.083] [PMID: 33276953]
[43]
Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol., 2005, 79(24), 15199-15208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[44]
Kumar Palli, K.; Ghosh, P.; Krishna Avula, S.; Sridhara Shanmukha Rao, B.; Patil, A.D.; Ghosh, S.; Sudhakar, G.; Raji Reddy, C.; Mainkar, P.S.; Chandrasekhar, S. Total synthesis of remdesivir. Tetrahedron Lett., 2022, 88, 153590.
[http://dx.doi.org/10.1016/j.tetlet.2021.153590] [PMID: 34908617]
[45]
Cheng, S.; Zhu, S.; Wu, Y.; Chen, R.; Yu, Z.; Zhang, X. A greener synthesis technology for lomefloxacin hydrochloride. Chem. Eng. Commun., 2009, 196(8), 901-905.
[http://dx.doi.org/10.1080/00986440902743794]