Exploring Therapeutic Potential of 1,3,4-Oxadiazole Nucleus as Anticancer Agents: A Mini-review

Page: [119 - 131] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Cancer is an uncontrolled, abnormal growth of cells and the second cause of death after cardiovascular disease. At present, chemotherapy and related drugs have three major categories. All three have characteristic action and toxicity levels of antitumor activity. Due to indications of unwanted side effects, the exploration of novel and selective anticancer agents is crucially required. Heterocyclic compounds have always played a major role in research for new drug discovery and development. 1,3,4-oxadiazole derivatives are heterocyclic isomers having pharmacological properties and play an important role as antiproliferative agents. The present review summarizes anticancer activities of 1,3,4-oxadiazole derivatives against different cell lines, such as HCT-116, MCF-7, HeLa, SMMC-7721, and A549. The results showed that 1,3,4-oxadiazole and its derivatives have the potential to play a major role as an anticancer agent with fewer side effects.

Keywords: Anticancer activity, cancer cell line, ELISA, MTT assay, 1, 3, 4-Oxadiazole derivatives.

Graphical Abstract

[1]
Nieddu, V.; Pinna, G.; Marchesi, I.; Sanna, L.; Asproni, B.; Pinna, G.A.; Bagella, L.; Murineddu, G. Synthesis and antineoplastic evaluation of novel unsymmetrical 1, 3, 4-oxadiazoles. J. Med. Chem., 2016, 59(23), 10451-10469.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00468] [PMID: 27801583]
[2]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[3]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C-H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem., 2015, 90, 45-52.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.011] [PMID: 25461310]
[4]
Gilchrest, B.; Eller, M. Cancer therapeutics: Smart and smarter. Drugs Future, 2009, 34(3), 205.
[http://dx.doi.org/10.1358/dof.2009.034.03.1336071]
[5]
Vassilev, A.; Lee, C.Y.; Vassilev, B.; Zhu, W.; Ormanoglu, P.; Martin, S.E.; DePamphilis, M.L. Identification of genes that are essential to restrict genome duplication to once per cell division. Oncotarget, 2016, 7(23), 34956-34976.
[http://dx.doi.org/10.18632/oncotarget.9008] [PMID: 27144335]
[6]
Boulikas, T.; Vougiouka, M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. (review) Oncol. Rep., 2004, 11(3), 559-595.
[http://dx.doi.org/10.3892/or.11.3.559] [PMID: 14767508]
[7]
von Eschenbach, A.C. A vision for the National Cancer Program in the United States. Nat. Rev. Cancer, 2004, 4(10), 820-828.
[http://dx.doi.org/10.1038/nrc1458] [PMID: 15510163]
[8]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[9]
Dobbelstein, M.; Moll, U. Targeting tumour-supportive cellular machineries in anticancer drug development. Nat. Rev. Drug Discov., 2014, 13(3), 179-196.
[http://dx.doi.org/10.1038/nrd4201] [PMID: 24577400]
[10]
Yadav, P.N.; Beveridge, R.E.; Blay, J.; Boyd, A.R.; Chojnacka, M.W.; Decken, A.; Deshpande, A.A.; Gardiner, M.G.; Hambley, T.W.; Hughes, M.J.; Jolly, L.; Lavangie, J.A.; MacInnis, T.D.; McFarland, S.A.; New, E.J.; Gossage, R.A. Platinum-oxazoline complexes as anti-cancer agents: Syntheses, characterisation and initial biological studies. MedChemComm, 2011, 2(4), 274.
[http://dx.doi.org/10.1039/c0md00211a]
[11]
Spanò, V.; Barreca, M.; Cilibrasi, V.; Genovese, M.; Renda, M.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Evaluation of fused pyrrolothiazole systems as correctors of mutant CFTR protein. Molecules, 2021, 26(5), 1275.
[http://dx.doi.org/10.3390/molecules26051275] [PMID: 33652850]
[12]
Barreca, M.; Stathis, A.; Barraja, P.; Bertoni, F. An overview on anti-tubulin agents for the treatment of lymphoma patients. Pharmacol. Ther., 2020, 211107552
[http://dx.doi.org/10.1016/j.pharmthera.2020.107552] [PMID: 32305312]
[13]
Spanò, V.; Venturini, A.; Genovese, M.; Barreca, M.; Raimondi, M.V.; Montalbano, A.; Galietta, L.J.V.; Barraja, P. Current development of CFTR potentiators in the last decade. Eur. J. Med. Chem., 2020, 204112631
[http://dx.doi.org/10.1016/j.ejmech.2020.112631] [PMID: 32898816]
[14]
Spanò, V.; Rocca, R.; Barreca, M.; Giallombardo, D.; Montalbano, A.; Carbone, A.; Raimondi, M.V.; Gaudio, E.; Bortolozzi, R.; Bai, R.; Tassone, P.; Alcaro, S.; Hamel, E.; Viola, G.; Bertoni, F.; Barraja, P. Pyrrolo [2 3 3, 4] cyclohepta [1, 2-d][1, 2] oxazoles, a new class of antimitotic agents active against multiple malignant cell types. J. Med. Chem., 2020, 63(20), 12023-12042.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01315] [PMID: 32986419]
[15]
Spanò, V.; Barreca, M.; Rocca, R.; Bortolozzi, R.; Bai, R.; Carbone, A.; Raimondi, M.V.; Piccionello, A.P.; Montalbano, A.; Alcaro, S.; Hamel, E.; Viola, G.; Barraja, P. Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2021, 212113122
[http://dx.doi.org/10.1016/j.ejmech.2020.113122] [PMID: 33401199]
[16]
Palit, R.; Saraswat, N.; Sahoo, J. Review on substitude 1,3,4-oxadiazole and its biological activities. Int. Res. J. Pharm., 2016, 7(2), 1-7.
[17]
Khalilullah, H.; J., Ahsan M.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1, 3, 4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12, 789.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[18]
Glomb, T. Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1, 3, 4-oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[19]
Mishra, P.; Rajak, H.; Mehta, A. Synthesis of Schiff bases of 2-amino-5-aryl-1,3,4-oxadiazoles and their evaluation for antimicrobial activities. J. Gen. Appl. Microbiol., 2005, 51(2), 133-141.
[http://dx.doi.org/10.2323/jgam.51.133] [PMID: 15942874]
[20]
Dolman, S.J.; Gosselin, F.; O’Shea, P.D.; Davies, I.W. Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles. J. Org. Chem., 2006, 71(25), 9548-9551.
[http://dx.doi.org/10.1021/jo0618730] [PMID: 17137395]
[21]
Yu, W.; Huang, G.; Zhang, Y.; Liu, H.; Dong, L.; Yu, X.; Li, Y.; Chang, J. I2-Mediated oxidative C-O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem., 2013, 78(20), 10337-10343.
[http://dx.doi.org/10.1021/jo401751h] [PMID: 24059837]
[22]
Fang, T.; Tan, Q.; Ding, Z.; Liu, B.; Xu, B. Pd-catalyzed oxidative annulation of hydrazides with isocyanides: Synthesis of 2-amino-1,3,4-oxadiazoles. Org. Lett., 2014, 16(9), 2342-2345.
[http://dx.doi.org/10.1021/ol5006449] [PMID: 24725151]
[23]
Zhang, K.; Wang, P.; Xuan, L-N.; Fu, X-Y.; Jing, F.; Li, S.; Liu, Y-M.; Chen, B-Q. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety. Bioorg. Med. Chem. Lett., 2014, 24(22), 5154-5156.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.086] [PMID: 25442303]
[24]
Maruthanila, V.L.; Elancheran, R.; Kunnumakkara, A.B.; Kabilan, S.; Kotoky, J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer, 2017, 24(2), 191-219.
[http://dx.doi.org/10.1007/s12282-016-0732-1] [PMID: 27796923]
[25]
Liu, C-Y.; Hung, M-H.; Wang, D-S.; Chu, P-Y.; Su, J-C.; Teng, T-H.; Huang, C-T.; Chao, T-T.; Wang, C-Y.; Shiau, C-W.; Tseng, L.M.; Chen, K.F. Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A-dependent phospho-Akt inactivation in estrogen receptor-negative human breast cancer cells. Breast Cancer Res., 2014, 16(5), 431.
[http://dx.doi.org/10.1186/s13058-014-0431-9] [PMID: 25228280]
[26]
Narrandes, S.; Huang, S.; Murphy, L.; Xu, W. The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC). BMC Cancer, 2018, 18(1), 22.
[http://dx.doi.org/10.1186/s12885-017-3939-4] [PMID: 29301506]
[27]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C-H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(8), 1692-1699.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.001] [PMID: 25801936]
[28]
Pidugu, V.R.; Yarla, N.S.; Pedada, S.R.; Kalle, A.M.; Satya, A.K. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg. Med. Chem., 2016, 24(21), 5611-5617.
[http://dx.doi.org/10.1016/j.bmc.2016.09.022] [PMID: 27665180]
[29]
Lee, A.V.; Oesterreich, S.; Davidson, N.E. MCF-7 cells-changing the course of breast cancer research and care for 45 years. J. Natl. Cancer Inst., 2015, 107(7), 107.
[http://dx.doi.org/10.1093/jnci/djv073]
[30]
Balas, V.I.; Banti, C.N.; Kourkoumelis, N.; Hadjikakou, S.K.; Geromichalos, G.D.; Sahpazidou, D.; Male, L.; Hursthouse, M.B.; Bednarz, B.; Kubicki, M.; Charalabopoulos, K.; Hadjiliadis, N. Structural and in vitro biological studies of organotin (IV) precursors; selective inhibitory activity against human breast cancer cells, positive to estrogen receptors. Aust. J. Chem., 2013, 65(12), 1625.
[http://dx.doi.org/10.1071/CH12448]
[31]
Latsis, G.K.; Banti, C.N.; Kourkoumelis, N.; Papatriantafyllopoulou, C.; Panagiotou, N.; Tasiopoulos, A.; Douvalis, A.; Kalampounias, A.G.; Bakas, T.; Hadjikakou, S.K. Poly organotin acetates against DNA with possible implementation on human breast cancer. Int. J. Mol. Sci., 2018, 19(7), 2055.
[http://dx.doi.org/10.3390/ijms19072055] [PMID: 30011935]
[32]
Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H.A.; Ramanathan, M.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem., 2019, 168, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.033] [PMID: 30798049]
[33]
Yamaoka, M.; Hara, T.; Kusaka, M. Overcoming persistent dependency on androgen signaling after progression to castration-resistant prostate cancer. Clin. Cancer Res., 2010, 16(17), 4319-4324.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0255] [PMID: 20647476]
[34]
Bohl, C.E.; Miller, D.D.; Chen, J.; Bell, C.E.; Dalton, J.T. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem., 2005, 280(45), 37747-37754.
[http://dx.doi.org/10.1074/jbc.M507464200] [PMID: 16129672]
[35]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144, 646.
[36]
Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The Bcl-2 family reunion. Mol. Cell, 2010, 37(3), 299-310.
[http://dx.doi.org/10.1016/j.molcel.2010.01.025] [PMID: 20159550]
[37]
Vogler, M.; Dinsdale, D.; Dyer, M.J.; Cohen, G.M. Bcl-2 inhibitors: Small molecules with a big impact on cancer therapy. Cell Death Differ., 2009, 16(3), 360-367.
[http://dx.doi.org/10.1038/cdd.2008.137] [PMID: 18806758]
[38]
Ziedan, N.I.; Stefanelli, F.; Fogli, S.; Westwell, A.D. Design, synthesis and pro-apoptotic antitumour properties of indole-based 3,5-disubstituted oxadiazoles. Eur. J. Med. Chem., 2010, 45(10), 4523-4530.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.012] [PMID: 20705365]
[39]
White, A.W.; Westwell, A.D.; Brahemi, G. Protein-protein interactions as targets for small-molecule therapeutics in cancer. Expert Rev. Mol. Med., 2008, 10, e8.
[http://dx.doi.org/10.1017/S1462399408000641] [PMID: 18353193]
[40]
Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1H-indol-3-yl)-N-aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.061] [PMID: 28087272]
[41]
Boraei, A.T.A.; Sarhan, A.A.M.; Yousuf, S.; Barakat, A. Synthesis of a new series of nitrogen/sulfur heterocycles by linking four rings: indole; 1,2,4-triazole; pyridazine; and quinoxaline. Molecules, 2020, 25(3), 450.
[http://dx.doi.org/10.3390/molecules25030450] [PMID: 31973234]
[42]
Rao, J.; Xu, D-R.; Zheng, F-M.; Long, Z-J.; Huang, S-S.; Wu, X.; Zhou, W-H.; Huang, R-W.; Liu, Q. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. J. Transl. Med., 2011, 9(1), 71.
[http://dx.doi.org/10.1186/1479-5876-9-71] [PMID: 21595920]
[43]
Clayton, A.L.; Hazzalin, C.A.; Mahadevan, L.C. Enhanced histone acetylation and transcription: A dynamic perspective. Mol. Cell, 2006, 23(3), 289-296.
[http://dx.doi.org/10.1016/j.molcel.2006.06.017] [PMID: 16885019]
[44]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15.
[45]
Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol., 2007, 25(1), 84-90.
[http://dx.doi.org/10.1038/nbt1272] [PMID: 17211407]
[46]
Campas-Moya, C. Romidepsin for the treatment of cutaneous Tcell lymphoma. Drugs of today (Barcelona, Spain: 1998), , 2009. 45, 787
[47]
Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265.
[http://dx.doi.org/10.1021/jm500303u] [PMID: 24972008]
[48]
Lahm, A.; Paolini, C.; Pallaoro, M.; Nardi, M.C.; Jones, P.; Neddermann, P.; Sambucini, S.; Bottomley, M.J.; Lo Surdo, P.; Carfí, A.; Koch, U.; De Francesco, R.; Steinkühler, C.; Gallinari, P. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. USA, 2007, 104(44), 17335-17340.
[http://dx.doi.org/10.1073/pnas.0706487104] [PMID: 17956988]
[49]
Sławiński, J.; Szafrański, K.; Pogorzelska, A.; Żołnowska, B.; Kawiak, A.; Macur, K.; Belka, M.; Bączek, T. Novel 2-benzylthio-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamides with anticancer activity: Synthesis, QSAR study, and metabolic stability. Eur. J. Med. Chem., 2017, 132, 236-248.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.039] [PMID: 28364658]
[50]
Brożewicz, K.; Sławiński, J. 1-(2-Mercaptobenzenesulfonyl)-3-hydroxyguanidines--novel potent antiproliferatives, synthesis and in vitro biological activity. Eur. J. Med. Chem., 2012, 55, 384-394.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.042] [PMID: 22892345]
[51]
Brożewicz, K.; Sławiński, J. Synthesis and in vitro activity of novel 2-(benzylthio)-4-chloro-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives. Monatsh. Chem., 2012, 143(6), 975-984.
[http://dx.doi.org/10.1007/s00706-012-0732-6] [PMID: 26166867]