Design, Synthesis, and Anti-Breast Cancer Activity of Novel Fluorinated 7-O-Modified Genistein Derivatives

Page: [64 - 74] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Genistein has been limited in clinical application due to its low bioavailability, extremely poor liposolubility, and fast glycosylation rate, though it possesses anti-breast cancer activity. Therefore, the discovery of novel genistein derivatives is an urgency.

Objective: To enhance the anti-breast cancer activity of genistein, a series of novel fluorinated genistein derivatives were synthesized.

Methods: Their in vitro antitumor activity was investigated by the MTT assay against three cancer cell lines, via, MDA-MB-231, MCF-7, and MDA-MB-435, respectively.

Results: Analogs 1d, 2b, and 3b showed remarkable anticancer activities compared to tamoxifen, a clinical anti-breast cancer drug on the market.

Conclusion: The activities against breast cancer of genistein were enhanced by introducing the 7- alkoxyl group and fluorine atom into the B-ring. Therefore, these compounds may be potential candidates for treating breast cancer.

Keywords: Anti-breast cancer activities, Genistein, Baker-Venkataraman reaction, Fluorinated-genistein derivatives, MTT assay, structure-activity relationship

Graphical Abstract

[1]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[2]
Winkel, R.R.; von Euler-Chelpin, M.; Nielsen, M.; Petersen, K.; Lillholm, M.; Nielsen, M.B.; Lynge, E.; Uldall, W.Y.; Vejborg, I. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: A case-control study. BMC Cancer, 2016, 16, 414-425.
[http://dx.doi.org/10.1186/s12885-016-2450-7] [PMID: 27387546]
[3]
Fouad, T.M.; Barrera, A.M.G.; Reuben, J.M.; Lucci, A.; Woodward, W.A.; Stauder, M.C.; Lim, B.; DeSnyder, S.M.; Arun, B.; Gildy, B.; Valero, V.; Hortobagyi, G.N.; Ueno, N.T. Inflammatory breast cancer: A proposed conceptual shift in the UICC-AJCC TNM staging system. Lancet Oncol., 2017, 18(4), e228-e232.
[http://dx.doi.org/10.1016/S1470-2045(17)30192-4] [PMID: 28368261]
[4]
de Nonneville, A.; Gonçalves, A.; Zemmour, C.; Cohen, M.; Classe, J.M.; Reyal, F.; Colombo, P.E.; Jouve, E.; Giard, S.; Barranger, E.; Sabatier, R.; Bertucci, F.; Boher, J.M.; Houvenaeghel, G. Adjuvant chemotherapy in pT1ab node-negative triple-negative breast carcinomas: Results of a national multi-institutional retrospective study. Eur. J. Cancer, 2017, 84, 34-43.
[http://dx.doi.org/10.1016/j.ejca.2017.06.043] [PMID: 28780480]
[5]
Li, X.; Wu, C.; Lin, X.; Cai, X.; Liu, L.; Luo, G.; You, Q.; Xiang, H. Synthesis and biological evaluation of 3-aryl-quinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Eur. J. Med. Chem., 2019, 161, 445-455.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.045] [PMID: 30384047]
[6]
Kantor, O.; Ajmani, G.; Wang, C.H.; Datta, A.; Yao, K. The shifting paradigm for breast cancer surgery in patients undergoing neoadjuvant chemotherapy. Ann. Surg. Oncol., 2018, 25(1), 164-172.
[http://dx.doi.org/10.1245/s10434-017-6217-4] [PMID: 29127538]
[7]
Zheng, X.; Yao, X.; Liu, Y.; Zheng, Z.; Cao, J.; Liao, D. Synthesis and cytotoxic activity of genistein derivatives. Med. Chem. Res., 2010, 19(9), 1296-1306.
[http://dx.doi.org/10.1007/s00044-009-9271-z]
[8]
Danciu, C.; Avram, S.; Pavel, I.Z.; Ghiulai, R.; Dehelean, C.A.; Ersilia, A.; Minda, D.; Petrescu, C.; Moaca, E.A.; Soica, C. Main isofla-vones found in dietary sources as natural anti-inflammatory agents. Curr. Drug Targets, 2018, 19(7), 841-853.
[http://dx.doi.org/10.2174/1389450118666171109150731] [PMID: 29141545]
[9]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[10]
Nagaraju, G.P.; Zafar, S.F.; El-Rayes, B.F. Pleiotropic effects of genistein in metabolic, inflammatory, and malignant diseases. Nutr. Rev., 2013, 71(8), 562-572.
[http://dx.doi.org/10.1111/nure.12044] [PMID: 23865800]
[11]
Li, Y.; Meeran, S.M.; Patel, S.N.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer, 2013, 12, 9-25.
[http://dx.doi.org/10.1186/1476-4598-12-9] [PMID: 23379261]
[12]
Jarić, I.; Živanović, J.; Miler, M.; Ajdžanović, V.; Blagojević, D.; Ristić, N.; Milošević, V.; Nestorović, N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol. Appl. Pharmacol., 2018, 339, 73-84.
[http://dx.doi.org/10.1016/j.taap.2017.12.001] [PMID: 29217487]
[13]
Mansoor, T.A.; Ramalho, R.M.; Luo, X.; Ramalhete, C.; Rodrigues, C.M.P.; Ferreira, M-J.U. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells. Phytother. Res., 2011, 25(12), 1819-1824.
[http://dx.doi.org/10.1002/ptr.3498] [PMID: 21495101]
[14]
Reger, M.K.; Zollinger, T.W.; Liu, Z.; Jones, J.F.; Zhang, J. Dietary intake of isoflavones and coumestrol and the risk of prostate cancer in the prostate, lung, colorectal and ovarian cancer screening trial. Int. J. Cancer, 2018, 142(4), 719-728.
[http://dx.doi.org/10.1002/ijc.31095] [PMID: 29114854]
[15]
Papaj, K.; Rusin, A.; Szeja, W.; Grynkiewicz, G. Absorption and metabolism of biologically active genistein derivatives in colon carcinoma cell line (Caco-2). Acta Pol. Pharm., 2014, 71(6), 1037-1044.
[PMID: 25745776]
[16]
Junior, C.O.R.; Castro, S.B.R.; Pereira, A.A.; Alves, C.C.S.; Oliveira, E.E.; Rêgo, R.T.; Ferreira, A.P.; de Almeida, M.V. Synthesis of genistein coupled with sugar derivatives and their inhibitory effect on nitric oxide production in macrophages. Eur. J. Med. Chem., 2014, 85, 615-620.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.032] [PMID: 25127153]
[17]
Rucinska, A.; Kirko, S.; Gabryelak, T. Effect of the phytoestrogen, genistein-8-C-glucoside, on Chinese hamster ovary cells in vitro. Cell Biol. Int., 2007, 31(11), 1371-1378.
[http://dx.doi.org/10.1016/j.cellbi.2007.05.012] [PMID: 17601753]
[18]
Li, Y.; Zhang, H. Soybean isoflavones ameliorate ischemic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Food Funct., 2017, 8(8), 2935-2944.
[http://dx.doi.org/10.1039/C7FO00342K] [PMID: 28745354]
[19]
Lu, L.W.; Chen, N-W.; Nayeem, F.; Ramanujam, V.S.; Kuo, Y-F.; Brunder, D.G.; Nagamani, M.; Anderson, K.E. Novel effects of phytoestrogenic soy isoflavones on serum calcium and chloride in premenopausal women: A 2-year double-blind, randomized, placebo-controlled study. Clin. Nutr., 2018, 37(6 Pt A), 1862-1870.
[http://dx.doi.org/10.1016/j.clnu.2017.11.002] [PMID: 29183775]
[20]
Pavese, J.M.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev., 2010, 29(3), 465-482.
[http://dx.doi.org/10.1007/s10555-010-9238-z] [PMID: 20730632]
[21]
Lee, H.; Choue, R.; Lim, H. Effect of soy isoflavones supplement on climacteric symptoms, bone biomarkers, and quality of life in Korean postmenopausal women: A randomized clinical trial. Nutr. Res. Pract., 2017, 11(3), 223-231.
[http://dx.doi.org/10.4162/nrp.2017.11.3.223] [PMID: 28584579]
[22]
Xie, X.; Wang, S.S.; Wong, T.C.S.; Fung, M.C. Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis. Cancer Cell Int., 2013, 13(1), 63.
[http://dx.doi.org/10.1186/1475-2867-13-63] [PMID: 23800022]
[23]
Cui, S.; Wienhoefer, N.; Bilitewski, U. Genistein induces morphology change and G2/M cell cycle arrest by inducing p38 MAPK activation in macrophages. Int. Immunopharmacol., 2014, 18(1), 142-150.
[http://dx.doi.org/10.1016/j.intimp.2013.11.016] [PMID: 24290959]
[24]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[25]
Zhang, X.; Cook, K.L.; Warri, A.; Cruz, I.M.; Rosim, M.; Riskin, J.; Helferich, W.; Doerge, D.; Clarke, R.; Hilakivi-Clarke, L. Lifetime genistein intake increases the response of mammary tumors to tamoxifen in rats. Clin. Cancer Res., 2017, 23(3), 814-824.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1735] [PMID: 28148690]
[26]
Setchell, K.D.R. The history and basic science development of soy isoflavones. Menopause, 2017, 24(12), 1338-1350.
[http://dx.doi.org/10.1097/GME.0000000000001018] [PMID: 29189602]
[27]
Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anticancer. Agents Med. Chem., 2012, 12(10), 1264-1280.
[http://dx.doi.org/10.2174/187152012803833107] [PMID: 22583407]
[28]
Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435.
[PMID: 22072878]
[29]
Hussain, H.; Green, I.R. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin. Ther. Pat., 2017, 27(10), 1135-1146.
[http://dx.doi.org/10.1080/13543776.2017.1339791] [PMID: 28586284]
[30]
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
[31]
Biegasiewicz, K.F.; Gordon, J.S.; Rodriguez, D.A.; Priefer, R. Development of a general approach to the synthesis of a library of isoflavonoid derivatives. Tetrahedron Lett., 2014, 55(37), 5210-5212.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.110]
[32]
Hakala, U.; Wahala, K. Microwave-promoted synthesis of polyhydroxydeoxybenzoins in ionic liquids. Tetrahedron Lett., 2006, 47(47), 8375-8378.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.069]
[33]
Li, S.J.; Liang, X.Y.; Li, H.J.; Li, W.; Zhou, L.; Chen, H.Q.; Ye, S.G.; Yu, D.H.; Cui, J.W. Low-dose irradiation promotes proliferation of the human breast cancer MDA-MB-231 cells through accumulation of mutant P53. Mol. Cell. Biochem., 2017, 50(1), 290-296.
[http://dx.doi.org/10.3892/ijo.2016.3795] [PMID: 27959407]
[34]
Hegde, S.M.; Kumar, M.N.; Kavya, K.; Kumar, K.M.; Nagesh, R.; Patil, R.H.; Babu, R.L.; Ramesh, G.T.; Sharma, S.C. Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells. Mol. Cell. Biochem., 2016, 422(1-2), 109-120.
[http://dx.doi.org/10.1007/s11010-016-2810-2] [PMID: 27632388]
[35]
Prasad, V.V.; Gopalan, R.O. Continued use of MDA-MB-435, a melanoma cell line, as a model for human breast cancer, even in year, 2014. NPJ Breast Cancer, 2015, 1, 15002.
[http://dx.doi.org/10.1038/npjbcancer.2015.2] [PMID: 28721362]
[36]
Vajdos, F.F.; Hoth, L.R.; Geoghegan, K.F.; Simons, S.P.; LeMotte, P.K.; Danley, D.E.; Ammirati, M.J.; Pandit, J. The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci., 2007, 16(5), 897-905.
[http://dx.doi.org/10.1110/ps.062729207] [PMID: 17456742]
[37]
Hou, Y.; Zhao, Y.; Li, Y. Environmentally friendly fluoroquinolone derivatives with lower plasma protein binding rate designed using 3D-QSAR, molecular docking and molecular dynamics simulation. Int. J. Environ. Res. Public Health, 2020, 17(18), 6626-2279.
[http://dx.doi.org/10.3390/ijerph17186626] [PMID: 32932916]
[38]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]