Gm15886-Hipk1 Signaling Pathway Plays Important Roles in the Pathogenesis of Bronchopulmonary Dysplasia Mice

Page: [1812 - 1820] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in the respiratory system of premature infants. Gm15886, as a lncRNA, is highly expressed in lung tissue of BPD newborn mice.

Aims: This study aimed to clarify the roles of the Gm15886 gene in the pathogenesis of BPD mice by determining the expression of Gm15886 and Hipk1 in lung tissues.

Methods: Sequence and localization of the Gm15886 gene and the related information of its adjacent genes were obtained using the UCSC browsing tool. The targeting gene of the Gm15886 was predicted using the Ensemble database and double luciferase assay. Neonatal C57BL/6J mice were exposed to 95% hyperoxia for 7 days to generate the hyperoxia-induced BPD mouse model. RT-PCR assay was used to detect Gm15886, Hipk1, and VEGF gene transcriptions in lung tissues in the development process of BPD (0, 3, 5, and 7 days). The pathological changes in lung tissues and Hipk1/VEGF gene transcription in lung tissues were detected in the Gm15886 gene silenced BPD mice.

Results: Gm15886 gene transcription in lung tissues was significantly increased in mice of the hyperoxia model group compared to that in the air control group (p<0.05). Gm15886 gene could completely bind and interact with the base sequence within the second exon of the Hipk1 gene. Hipk1 was a targeting gene for Gm15886. Gene transcription and expression of Hipk1 were remarkably enhanced in mice of the hyperoxia model group compared to that in the air control group (p<0.05). The silencing of the Gm15886 gene improved alveolar morphology and markedly downregulated Hipk1 and upregulated VEGF gene transcription compared to those in the Blank vector BPD group (p<0.05).

Conclusion: Gm15886-Hipk1 signaling pathway plays a critical role in the pathogenesis of BPD through modulating Hipk1 and VEGF gene transcription. This study might provide a theoretical basis for the treatment of BPD.

Keywords: bronchopulmonary dysplasia (BPD), long non-coding RNA, Gm15886, bioinformatics analysis, Hipk1

Graphical Abstract

[1]
Yuan, W.; Liu, X.; Zeng, L.; Liu, H.; Cai, B.; Huang, Y.; Tao, X.; Mo, L.; Zhao, L.; Gao, C. Silencing of lung non-coding RNA X inactive specific transcript (Xist) contributes to suppression of bronchopulmonary dysplasia induced by hyperoxia in newborn mice via microRNA-101-3p and the transforming growth factor-beta 1 (TGF-beta 1)/Smad3 axis. Med. Sci. Monit., 2020, 26(1), e922424.
[PMID: 33070148]
[2]
Lista, G.; Meneghin, F.; Bresesti, I.; Cavigioli, F. Nutritional problems of children with bronchopulmonary dysplasia after hospital discharge. Pediatr. Med. Chir., 2017, 39(4), 183.
[http://dx.doi.org/10.4081/pmc.2017.183] [PMID: 29502385]
[3]
Martin, J.A.; Osterman, M.J.K. Describing the increase in preterm births in the United States, 2014-2016. NCHS Data Brief, 2018, 312(312), 1-8.
[PMID: 30044213]
[4]
Kong, X.; Xu, F.; Wu, R.; Wu, H.; Ju, R.; Zhao, X.; Tong, X.; Lv, H.; Ding, Y.; Liu, F.; Xu, P.; Liu, W.; Cheng, H.; Chen, T.; Zeng, S.; Jia, W.; Li, Z.; Qiu, H.; Wang, J.; Feng, Z. Neonatal mortality and morbidity among infants between 24 to 31 complete weeks: A multicenter survey in China from 2013 to 2014. BMC Pediatr., 2016, 16(1), 174.
[http://dx.doi.org/10.1186/s12887-016-0716-5] [PMID: 27809893]
[5]
Michael, Z.; Spyropoulos, F.; Ghanta, S.; Christou, H. Bronchopulmonary dysplasia: An update of current pharmacologic therapies and new approaches. Clin. Med. Insights. Pediatr., 2018, 12, 1179556518817322.
[http://dx.doi.org/10.1177/1179556518817322] [PMID: 30574005]
[6]
Principi, N.; Di Pietro, G.M.; Esposito, S. Bronchopulmonary dysplasia: Clinical aspects and preventive and therapeutic strategies. J. Transl. Med., 2018, 16(1), 36.
[http://dx.doi.org/10.1186/s12967-018-1417-7] [PMID: 29463286]
[7]
Hwang, J.S.; Rehan, V.K. Recent advances in bronchopulmonary dysplasia: Pathophysiology, prevention, and treatment. Lung, 2018, 196(2), 129-138.
[http://dx.doi.org/10.1007/s00408-018-0084-z] [PMID: 29374791]
[8]
Lecarpentier, Y.; Gourrier, E.; Gobert, V.; Vallée, A. Bronchopulmonary dysplasia: Crosstalk between PPAR-gamma, WNT/beta-Catenin and TGF-beta pathways, the potential therapeutic role of PPAR-gamma agonists. Front Pediatr., 2019, 7(1), 176.
[http://dx.doi.org/10.3389/fped.2019.00176] [PMID: 31131268]
[9]
Naeem, A.; Ahmed, I.; Silveyra, P. Bronchopulmonary dysplasia: An update on experimental therapeutics. Eur. Med. J., 2019, 4(1), 20-29.
[PMID: 31372499]
[10]
Moschino, L.; Bonadies, L.; Baraldi, E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. Pediatr. Pulmonol., 2021, 56(11), 3499-3508.
[http://dx.doi.org/10.1002/ppul.25380] [PMID: 33729686]
[11]
Nakanishi, H.; Morikawa, S.; Kitahara, S.; Yoshii, A.; Uchiyama, A.; Kusuda, S.; Ezaki, T. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice. Med. Mol. Morphol., 2018, 51(3), 166-175.
[http://dx.doi.org/10.1007/s00795-018-0182-2] [PMID: 29362947]
[12]
Kiso, M.; Tanaka, S.; Saji, S.; Toi, M.; Sato, F. Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network. Int. J. Cancer, 2018, 143(11), 2905-2918.
[http://dx.doi.org/10.1002/ijc.31645] [PMID: 29971782]
[13]
Oplawski, M.; Dziobek, K.; Zmarzły, N.; Grabarek, B.; Halski, T.; Januszyk, P.; Kuś-Kierach, A.; Adwent, I.; Dąbruś, D.; Kiełbasiński, K.; Boroń, D. Expression profile of VEGF-C, VEGF-D and VEGF-3 in different grades of endometrial cancer. Curr. Pharm. Biotechnol., 2019, 20(12), 1004-1010.
[http://dx.doi.org/10.2174/1389201020666190718164431] [PMID: 31333122]
[14]
Liang, S.; Ren, K.; Li, B.; Li, F.; Liang, Z.; Hu, J.; Xu, B.; Zhang, A. LncRNA SNHG1 alleviates hypoxia-reoxygenation-induced vascular endothelial cell injury as a competing endogenous RNA through the HIF-1α/VEGF signal pathway. Mol. Cell. Biochem., 2020, 465(1-2), 1-11.
[http://dx.doi.org/10.1007/s11010-019-03662-0] [PMID: 31792649]
[15]
Szafranski, P.; Dharmadhikari, A.V.; Brosens, E.; Gurha, P.; Kolodziejska, K.E.; Zhishuo, O.; Dittwald, P.; Majewski, T.; Mohan, K.N.; Chen, B.; Person, R.E.; Tibboel, D.; de Klein, A.; Pinner, J.; Chopra, M.; Malcolm, G.; Peters, G.; Arbuckle, S.; Guiang, S.F., III; Hustead, V.A.; Jessurun, J.; Hirsch, R.; Witte, D.P.; Maystadt, I.; Sebire, N.; Fisher, R.; Langston, C.; Sen, P.; Stankiewicz, P. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res., 2013, 23(1), 23-33.
[http://dx.doi.org/10.1101/gr.141887.112] [PMID: 23034409]
[16]
Wang, J.; Yin, J.; Wang, X.; Liu, H.; Hu, Y.; Yan, X.; Zhuang, B.; Yu, Z.; Han, S. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. J. Cell. Biochem., 2019, 120(6), 9369-9380.
[http://dx.doi.org/10.1002/jcb.28212] [PMID: 30802330]
[17]
Shang, Y.; Doan, C.N.; Arnold, T.D.; Lee, S.; Tang, A.A.; Reichardt, L.F.; Huang, E.J. Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-β-TAK1-dependent mechanism. PLoS Biol., 2013, 11(4), e1001527.
[http://dx.doi.org/10.1371/journal.pbio.1001527] [PMID: 23565059]
[18]
Bao, T.P.; Wu, R.; Cheng, H.P.; Cui, X.W.; Tian, Z.F. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Cell Biochem. Funct., 2016, 34(5), 299-309.
[http://dx.doi.org/10.1002/cbf.3190] [PMID: 27137150]
[19]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[20]
Mo, W.; Li, Y.; Chang, W.; Luo, Y.; Mai, B.; Zhou, J. The Role of LncRNA H19 in MAPK Signaling Pathway Implicated in the Progression of Bronchopulmonary Dysplasia. Cell Transplant., 2020, 29, 963689720918294.
[http://dx.doi.org/10.1177/0963689720918294] [PMID: 32308025]
[21]
Yangi, R.; Huang, H.; Zhou, Q. Long noncoding RNA MALAT1 sponges miR-129-5p to regulate the development of bronchopulmonary dysplasia by increasing the expression of HMGB1. J. Int. Med. Res., 2020, 48(5), 300060520918476.
[http://dx.doi.org/10.1177/0300060520918476] [PMID: 32397779]
[22]
Cai, C.; Qiu, J.; Qiu, G.; Chen, Y.; Song, Z.; Li, J.; Gong, X. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis. BMC Pulm. Med., 2017, 17(1), 199.
[http://dx.doi.org/10.1186/s12890-017-0524-1] [PMID: 29237426]
[23]
Liu, Z.Z.; Tian, Y.F.; Wu, H.; Ouyang, S.Y.; Kuang, W.L. LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma, 2020, 67(1), 111-118.
[http://dx.doi.org/10.4149/neo_2019_190121N61] [PMID: 31777264]
[24]
Bao, T.P.; Tian, Z.F.; Zhao, S.; Yang, L.; Cheng, H.; Zhang, Y.; Wang, X.; Wang, H. Expression of long non-coding RNA 1010001N08Rik in bronchopulmonary dysplasia and its bioinformatics analysis. Chin. J. Neonatol., 2017, 32(5), 384-388.
[25]
Conte, A.; Pierantoni, G.M. Update on the Regulation of HIPK1, HIPK2 and HIPK3 Protein Kinases by microRNAs. MicroRNA, 2018, 7(3), 178-186.
[http://dx.doi.org/10.2174/2211536607666180525102330] [PMID: 29793420]
[26]
Wu, Q.; Yang, H.; Tai, R.; Li, C.; Xia, T.; Liu, Y.; Sun, C. Lnchipk1 inhibits mouse adipocyte apoptosis as a sponge of miR-497. Biofactors, 2022, 48(1), 135-147.
[http://dx.doi.org/10.1002/biof.1807] [PMID: 34856026]
[27]
van der Laden, J.; Soppa, U.; Becker, W. Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK). Cell Commun. Signal., 2015, 13(1), 3.
[http://dx.doi.org/10.1186/s12964-014-0082-6] [PMID: 25630557]
[28]
Yang, N.; Wang, H.; Zhang, L.; Lv, J.; Niu, Z.; Liu, J.; Zhang, Z. Long non-coding RNA SNHG14 aggravates LPS-induced acute kidney injury through regulating miR-495-3p/HIPK1. Acta Biochim. Biophys. Sin. (Shanghai), 2021, 53(6), 719-728.
[http://dx.doi.org/10.1093/abbs/gmab034] [PMID: 33856026]
[29]
Marinaro, C.; Pannese, M.; Weinandy, F.; Sessa, A.; Bergamaschi, A.; Taketo, M.M.; Broccoli, V.; Comi, G.; Götz, M.; Martino, G.; Muzio, L. Wnt signaling has opposing roles in the developing and the adult brain that are modulated by Hipk1. Cereb. Cortex, 2012, 22(10), 2415-2427.
[http://dx.doi.org/10.1093/cercor/bhr320] [PMID: 22095214]
[30]
Pavlacky, J.; Polak, J. Technical feasibility and physiological relevance of hypoxic cell culture models. Front. Endocrinol. (Lausanne), 2020, 11(1), 57.
[http://dx.doi.org/10.3389/fendo.2020.00057] [PMID: 32153502]
[31]
Fan, J.; Lv, H.; Li, J.; Che, Y.; Xu, B.; Tao, Z.; Jiang, W. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J. Cell. Physiol., 2019, 234(6), 7695-7707.
[http://dx.doi.org/10.1002/jcp.27767] [PMID: 30565676]
[32]
Zhang, W.; Li, Y.; Xi, X.; Zhu, G.; Wang, S.; Liu, Y.; Song, M. MicroRNA-15a-5p induces pulmonary artery smooth muscle cell apoptosis in a pulmonary arterial hypertension model via the VEGF/p38/MMP 2 signaling pathway. Int. J. Mol. Med., 2020, 45(2), 461-474.
[PMID: 31894295]