HDAC Inhibitors against SARS-CoV-2

Page: [2 - 14] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Following the coronavirus outbreak, global efforts to find a vaccine and drug affecting Covid- 19 have been widespread. Reusing some of the available drugs has had relatively satisfactory results. One of the classes of drugs studied against SARS-CoV-2 is the HDAC inhibitors collected in this review. Among the most important points of this study can be mentioned: (a) SARS-COV-2 infection can influence the ACE/ACE2-ATR1-Cholesterol-HDAC axis signaling, (b) By limiting endocytosis and decreasing ACE2-spike protein recognition at the same time, Romidepsin may hinder SARS-2-S-driven host cell entry. (c) HDAC inhibitors affect the expression of ABO, ACE2 and TMPRSS2 in epithelial cell lines. (d) Valproic acid may help to reduce ARDS as well as hospitalizations and death. (e) Trichostatin A inhibits antigen expression, viral RNA load and infectious particle production in SARS-CoV-2.

Keywords: Histone deacetylase, HDAC inhibitors, SARS-CoV-2, COVID-19, respiratory syndrome, viral pneumonia.

Graphical Abstract

[1]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[2]
Hui, D.S.; I Azhar, E. ; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[3]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[4]
Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.; Khan, K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. J. Travel Med., 2020, 27(2)
[5]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y-M.; Wang, W.; Song, Z-G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[6]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[7]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses, 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[8]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[9]
Cong, Y.; Ren, X. Coronavirus entry and release in polarized epithelial cells: a review. Rev. Med. Virol., 2014, 24(5), 308-315.
[http://dx.doi.org/10.1002/rmv.1792] [PMID: 24737708]
[10]
Mesli, F.; Ghalem, M.; Daoud, I.; Ghalem, S. Potential inhibitors of angiotensin converting enzyme 2 receptor of COVID-19 by Corchorus olitorius Linn using docking, molecular dynamics, conceptual DFT investigation and pharmacophore mapping. J. Biomol. Struct. Dyn., 2021, 1-13.
[http://dx.doi.org/10.1080/07391102.2021.1896389] [PMID: 33706683]
[11]
Abbas, S.H.; Abd El-Hafeez, A.A.; Shoman, M.E.; Montano, M.M.; Hassan, H.A. New quinoline/chalcone hybrids as anti-cancer agents: design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg. Chem., 2019, 82, 360-377.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.064] [PMID: 30428415]
[12]
Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. J. Biomol. Struct. Dyn., 2021, 39(8), 2857-2872.
[http://dx.doi.org/10.1080/07391102.2020.1756411] [PMID: 32295479]
[13]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[14]
Mishra, D.; Maurya, R.R.; Kumar, K.; Munjal, N.S.; Bahadur, V.; Sharma, S.; Singh, P.; Bahadur, I. Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: docking and molecular dynamics simulation studies. J. Mol. Liq., 2021, 335, 116185.
[http://dx.doi.org/10.1016/j.molliq.2021.116185] [PMID: 33879934]
[15]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[16]
Mélo Silva Júnior, M.L.; Souza, L.M.A.; Dutra, R.E.M.C.; Valente, R.G.M.; Melo, T.S. Review on therapeutic targets for COVID-19: Insights from cytokine storm. Postgrad. Med. J., 2021, 97(1148), 391-398.
[http://dx.doi.org/10.1136/postgradmedj-2020-138791] [PMID: 33008960]
[17]
Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.; Lipkin, W.I.; Morse, S.S.; Mazet, J.A.K.; Goldstein, T. Global patterns in coronavirus diversity. Virus Evol., 2017, 3(1), vex012.
[http://dx.doi.org/10.1093/ve/vex012] [PMID: 28630747]
[18]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[19]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[20]
Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model., 2020, 5, 248-255.
[http://dx.doi.org/10.1016/j.idm.2020.02.001] [PMID: 32099934]
[21]
Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X.C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J. Virol., 2008, 82(5), 2515-2527.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[22]
Al-Karmalawy, A.A.; Alnajjar, R.; Dahab, M.; Metwaly, A.; Eissa, I. Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. Ulum-i Daruyi, 2021, 10.
[http://dx.doi.org/10.34172/PS.2021.3]
[23]
Zhang, S.; Gao, C.; Das, T.; Luo, S.; Tang, H.; Yao, X.; Cho, C.Y.; Lv, J.; Maravillas, K.; Jones, V.; Chen, X.; Huang, R. The spike-ACE2 binding assay: an in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies. J. Immunol. Methods, 2022, 503, 113244.
[http://dx.doi.org/10.1016/j.jim.2022.113244] [PMID: 35218866]
[24]
Zhang, Y.; Tang, L.V. Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. J. Proteome Res., 2021, 20(1), 49-59.
[http://dx.doi.org/10.1021/acs.jproteome.0c00526] [PMID: 33347311]
[25]
Rizzuti, B.; Grande, F.; Conforti, F.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Ortega-Alarcon, D.; Vega, S.; Reyburn, H.T.; Abian, O.; Velazquez-Campoy, A. Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs. Biomedicines, 2021, 9(4), 375.
[http://dx.doi.org/10.3390/biomedicines9040375] [PMID: 33918402]
[26]
Pomplun, S. Targeting the SARS-CoV-2-spike protein: From antibodies to miniproteins and peptides. RSC Medicinal Chemistry., 2020, 12(2), 197-202.
[http://dx.doi.org/10.1039/D0MD00385A] [PMID: 34041482]
[27]
Wang, L.; Hu, W.; Fan, C. Structural and biochemical characterization of SADS-CoV papain-like protease 2. Protein Sci., 2020, 29(5), 1228-1241.
[http://dx.doi.org/10.1002/pro.3857] [PMID: 32216114]
[28]
Yoshida, M.; Kudo, N.; Kosono, S.; Ito, A. Chemical and structural biology of protein lysine deacetylases. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(5), 297-321.
[http://dx.doi.org/10.2183/pjab.93.019] [PMID: 28496053]
[29]
Omidkhah, N.; Hadizadeh, F.; Ghodsi, R. Dual HDAC/BRD4 inhibitors against cancer. Med. Chem. Res., 2021, 1-15.
[30]
Zwergel, C.; Stazi, G.; Valente, S.; Mai, A. Histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. J Clin Epigenetics., 2016, 2(1), 7.
[31]
Zagni, C.; Floresta, G.; Monciino, G.; Rescifina, A. The search for potent, small‐molecule HDACIs in cancer treatment: a decade after vorinostat. Med. Res. Rev., 2017, 37(6), 1373-1428.
[http://dx.doi.org/10.1002/med.21437] [PMID: 28181261]
[32]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[33]
Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P.A.; Scher, H.; Richon, V.M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(17), 3923-3931.
[http://dx.doi.org/10.1200/JCO.2005.14.167] [PMID: 15897550]
[34]
Stazi, G.; Fioravanti, R.; Mai, A.; Mattevi, A.; Valente, S. Histone deacetylases as an epigenetic pillar for the development of hybrid inhibitors in cancer. Curr. Opin. Chem. Biol., 2019, 50, 89-100.
[http://dx.doi.org/10.1016/j.cbpa.2019.03.002] [PMID: 30986654]
[35]
Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; Padmanabhan, S.; Shustov, A.; Nichols, J.; Carroll, S.; Balser, J.; Balser, B.; Horwitz, S. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol., 2012, 30(6), 631-636.
[http://dx.doi.org/10.1200/JCO.2011.37.4223] [PMID: 22271479]
[36]
Ueda, H.; Manda, T.; Matsumoto, S.; Mukumoto, S.; Nishigaki, F.; Kawamura, I.; Shimomura, K. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot. (Tokyo), 1994, 47(3), 315-323.
[http://dx.doi.org/10.7164/antibiotics.47.315] [PMID: 8175484]
[37]
Novotny-Diermayr, V; Hart, S; Goh, K; Cheong, A; Ong, L; Hentze, H The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML Blood Cancer J.,, 2012, 2(5), e69-e.2012.
[38]
Qiao, Z.; Ren, S.; Li, W.; Wang, X.; He, M.; Guo, Y.; Sun, L.; He, Y.; Ge, Y.; Yu, Q. Chidamide, a novel histone deacetylase inhibitor, synergistically enhances gemcitabine cytotoxicity in pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2013, 434(1), 95-101.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.059] [PMID: 23541946]
[39]
Zhang, D.; Damoiseaux, R.; Babayan, L.; Rivera-Meza, E.K.; Yang, Y.; Bergsneider, M.; Wang, M.B.; Yong, W.H.; Kelly, K.; Heaney, A.P. Targeting corticotroph HDAC and PI3-kinase in cushing disease. J. Clin. Endocrinol. Metab., 2021, 106(1), e232-e246.
[http://dx.doi.org/10.1210/clinem/dgaa699] [PMID: 33000123]
[40]
He, F.; Ran, Y.; Li, X.; Wang, D.; Zhang, Q.; Lv, J.; Yu, C.; Qu, Y.; Zhang, X.; Xu, A.; Wei, C.; Chou, C.J.; Wu, J. Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104109.
[http://dx.doi.org/10.1016/j.bioorg.2020.104109] [PMID: 32768741]
[41]
Buonvicino, D.; Ranieri, G.; Chiarugi, A. Treatment with non-specific HDAC inhibitors administered after disease onset does not delay evolution in a mouse model of progressive multiple sclerosis. Neuroscience, 2021, 465, 38-45.
[http://dx.doi.org/10.1016/j.neuroscience.2021.04.002] [PMID: 33862148]
[42]
Mukhi, M.; Jai, J. Evaluating the potency of three plant compounds as HDAC Inhibitors for the treatment of Huntington’s disease: An in silico study. Int. J. Herb. Med., 2020, 8(5), 10-13.
[43]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[44]
Omidkhah, N.; Ghodsi, R. NO-HDAC dual inhibitors. Eur. J. Med. Chem., 2022, 227, 113934.
[http://dx.doi.org/10.1016/j.ejmech.2021.113934] [PMID: 34700268]
[45]
Teodori, L.; Sestili, P.; Madiai, V.; Coppari, S.; Fraternale, D.; Rocchi, M.B.L.; Ramakrishna, S.; Albertini, M.C. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing Anti-COVID-19 therapeutics. Front. Pharmacol., 2020, 11, 582003.
[http://dx.doi.org/10.3389/fphar.2020.582003] [PMID: 33363465]
[46]
Kumar, V.; Jung, Y-S.; Liang, P-H. Anti-SARS coronavirus agents: a patent review (2008 - present). Expert Opin. Ther. Pat., 2013, 23(10), 1337-1348.
[http://dx.doi.org/10.1517/13543776.2013.823159] [PMID: 23905913]
[47]
Piechotta, V.; Iannizzi, C.; Chai, K.L.; Valk, S.J.; Kimber, C.; Dorando, E. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst. Rev., 2021, 5(5), CD013600.
[http://dx.doi.org/10.1002/14651858.CD013600.pub4] [PMID: 34013969]
[48]
Wang, Z.; Chen, X.; Lu, Y.; Chen, F.; Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends, 2020, 14(1), 64-68.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[49]
Fan, Y.; Siklenka, K.; Arora, S.K.; Ribeiro, P.; Kimmins, S.; Xia, J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res., 2016, 44(W1), W135-41.
[http://dx.doi.org/10.1093/nar/gkw288] [PMID: 27105848]
[50]
Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of micrornas on protein output nature. Nature, 2008, 455(7209), 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[51]
Oliveira, A.C.; Bovolenta, L.A.; Alves, L.; Figueiredo, L.; Ribeiro, A.O.; Campos, V.F.; Lemke, N.; Pinhal, D. Understanding the modus operandi of MicroRNA regulatory clusters. Cells, 2019, 8(9), 1103.
[http://dx.doi.org/10.3390/cells8091103] [PMID: 31540501]
[52]
Patel, A.B.; Verma, A. Nasal ACE2 levels and COVID-19 in children. JAMA, 2020, 323(23), 2386-2387.
[http://dx.doi.org/10.1001/jama.2020.8946] [PMID: 32432681]
[53]
El Baba, R.; Herbein, G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin. Epigenetics, 2020, 12(1), 118.
[http://dx.doi.org/10.1186/s13148-020-00912-7] [PMID: 32758273]
[54]
Liew, W.C.; Sundaram, G.M.; Quah, S.; Lum, G.G.; Tan, J.S.; Ramalingam, R.; Common, J.E.A.; Tang, M.B.Y.; Lane, E.B.; Thng, S.T.G.; Sampath, P. Belinostat resolves skin barrier defects in atopic dermatitis by targeting the dysregulated miR-335:SOX6 axis. J. Allergy Clin. Immunol., 2020, 146(3), 606-620.e12.
[http://dx.doi.org/10.1016/j.jaci.2020.02.007] [PMID: 32088305]
[55]
Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; Du, B.; Aboodi, M.; Wunsch, H.; Cecconi, M.; Koh, Y.; Chertow, D.S.; Maitland, K.; Alshamsi, F.; Belley-Cote, E.; Greco, M.; Laundy, M.; Morgan, J.S.; Kesecioglu, J.; McGeer, A.; Mermel, L.; Mammen, M.J.; Alexander, P.E.; Arrington, A.; Centofanti, J.E.; Citerio, G.; Baw, B.; Memish, Z.A.; Hammond, N.; Hayden, F.G.; Evans, L.; Rhodes, A. Surviving sepsis campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med., 2020, 46(5), 854-887.
[http://dx.doi.org/10.1007/s00134-020-06022-5] [PMID: 32222812]
[56]
Liu, K.; Zou, R.; Cui, W.; Li, M.; Wang, X.; Dong, J.; Li, H.; Li, H.; Wang, P.; Shao, X.; Su, W.; Chan, H.C.S.; Li, H.; Yuan, S. Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-CoV2. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1361-1370.
[http://dx.doi.org/10.1021/acsptsci.0c00163] [PMID: 34778724]
[57]
Yang, L.P. Romidepsin: In the treatment of T-cell lymphoma. Drugs, 2011, 71(11), 1469-1480.
[http://dx.doi.org/10.2165/11207170-000000000-00000] [PMID: 21812508]
[58]
Bennion, C.; Brown, R.C.; Cook, A.R.; Manners, C.N.; Payling, D.W.; Robinson, D.H. Design, synthesis, and physicochemical properties of a novel, conformationally restricted 2,3-dihydro-1,3,4-thiadiazole-containing angiotensin converting enzyme inhibitor which is preferentially eliminated by the biliary route in rats. J. Med. Chem., 1991, 34(1), 439-447.
[http://dx.doi.org/10.1021/jm00105a066] [PMID: 1992145]
[59]
Coric, P.; Turcaud, S.; Meudal, H.; Roques, B.P.; Fournie-Zaluski, M-C. Optimal recognition of neutral endopeptidase and angiotensin-converting enzyme active sites by mercaptoacyldipeptides as a means to design potent dual inhibitors. J. Med. Chem., 1996, 39(6), 1210-1219.
[http://dx.doi.org/10.1021/jm950590p] [PMID: 8632427]
[60]
Corradi, H.R.; Schwager, S.L.; Nchinda, A.T.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J. Mol. Biol., 2006, 357(3), 964-974.
[http://dx.doi.org/10.1016/j.jmb.2006.01.048] [PMID: 16476442]
[61]
Li, F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol., 2008, 82(14), 6984-6991.
[http://dx.doi.org/10.1128/JVI.00442-08] [PMID: 18448527]
[62]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[63]
Lyman, E.; Higgs, C.; Kim, B.; Lupyan, D.; Shelley, J.C.; Farid, R.; Voth, G.A. A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A(2A) adenosine receptor. Structure, 2009, 17(12), 1660-1668.
[http://dx.doi.org/10.1016/j.str.2009.10.010] [PMID: 20004169]
[64]
Di Paola, L.; Hadi-Alijanvand, H.; Song, X.; Hu, G.; Giuliani, A. The discovery of a putative allosteric site in the SARS-CoV-2 spike protein using an integrated structural/dynamic approach. J. Proteome Res., 2020, 19(11), 4576-4586.
[http://dx.doi.org/10.1021/acs.jproteome.0c00273] [PMID: 32551648]
[65]
Mohamed, M.F.; Abuo-Rahma, G.E-D.A.; Hayallah, A.M.; Aziz, M.A.; Nafady, A.; Samir, E. Molecular docking study reveals the potential repurposing of histone deacetylase inhibitors against COVID-19. Int. J. Pharm. Sci. Res., 2020, •••, 4261-4270.
[66]
Ziegler, C.G.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[67]
Liu, M.; Wang, T.; Zhou, Y.; Zhao, Y.; Zhang, Y.; Li, J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J. Transl. Int. Med., 2020, 8(1), 9-19.
[http://dx.doi.org/10.2478/jtim-2020-0003] [PMID: 32435607]
[68]
Li, C.; Xu, B.H. The viral, epidemiologic, clinical characteristics and potential therapy options for COVID-19: a review. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4576-4584.
[PMID: 32373998]
[69]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[70]
Mostafa-Hedeab, G. ACE2 as drug target of COVID-19 virus treatment, simplified updated review. Rep. Biochem. Mol. Biol., 2020, 9(1), 97-105.
[http://dx.doi.org/10.29252/rbmb.9.1.97] [PMID: 32821757]
[71]
Gue, Y.X.; Gorog, D.A. Reduction in ACE2 may mediate the prothrombotic phenotype in COVID-19. Eur. Heart J., 2020, 41(33), 3198-3199.
[http://dx.doi.org/10.1093/eurheartj/ehaa534] [PMID: 32691041]
[72]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[73]
Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; Qu, Y.; Li, F.; Lv, Q.; Wang, W.; Xue, J.; Gong, S.; Liu, M.; Wang, G.; Wang, S.; Song, Z.; Zhao, L.; Liu, P.; Zhao, L.; Ye, F.; Wang, H.; Zhou, W.; Zhu, N.; Zhen, W.; Yu, H.; Zhang, X.; Guo, L.; Chen, L.; Wang, C.; Wang, Y.; Wang, X.; Xiao, Y.; Sun, Q.; Liu, H.; Zhu, F.; Ma, C.; Yan, L.; Yang, M.; Han, J.; Xu, W.; Tan, W.; Peng, X.; Jin, Q.; Wu, G.; Qin, C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020, 583(7818), 830-833.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[74]
Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833.e3.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[75]
Gérard, C.; Maggipinto, G.; Minon, J.M. COVID-19 and ABO blood group: another viewpoint. Br. J. Haematol., 2020, 190(2), e93-e94.
[http://dx.doi.org/10.1111/bjh.16884] [PMID: 32453863]
[76]
Li, J.; Wang, X.; Chen, J.; Cai, Y.; Deng, A.; Yang, M. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. Br. J. Haematol., 2020, 190(1), 24-27.
[http://dx.doi.org/10.1111/bjh.16797] [PMID: 32379894]
[77]
Takahashi, Y.; Hayakawa, A.; Sano, R.; Fukuda, H.; Harada, M.; Kubo, R.; Okawa, T.; Kominato, Y. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci. Rep., 2021, 11(1), 3379.
[http://dx.doi.org/10.1038/s41598-021-82970-2] [PMID: 33564039]
[78]
Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; Grimsrud, M.M.; Milani, C.; Aziz, F.; Kässens, J.; May, S.; Wendorff, M.; Wienbrandt, L.; Uellendahl-Werth, F.; Zheng, T.; Yi, X.; de Pablo, R.; Chercoles, A.G.; Palom, A.; Garcia-Fernandez, A.E.; Rodriguez-Frias, F.; Zanella, A.; Bandera, A.; Protti, A.; Aghemo, A.; Lleo, A.; Biondi, A.; Caballero-Garralda, A.; Gori, A.; Tanck, A.; Carreras Nolla, A.; Latiano, A.; Fracanzani, A.L.; Peschuck, A.; Julià, A.; Pesenti, A.; Voza, A.; Jiménez, D.; Mateos, B.; Nafria Jimenez, B.; Quereda, C.; Paccapelo, C.; Gassner, C.; Angelini, C.; Cea, C.; Solier, A.; Pestaña, D.; Muñiz-Diaz, E.; Sandoval, E.; Paraboschi, E.M.; Navas, E.; García Sánchez, F.; Ceriotti, F.; Martinelli-Boneschi, F.; Peyvandi, F.; Blasi, F.; Téllez, L.; Blanco-Grau, A.; Hemmrich-Stanisak, G.; Grasselli, G.; Costantino, G.; Cardamone, G.; Foti, G.; Aneli, S.; Kurihara, H.; ElAbd, H.; My, I.; Galván-Femenia, I.; Martín, J.; Erdmann, J.; Ferrusquía-Acosta, J.; Garcia-Etxebarria, K.; Izquierdo-Sanchez, L.; Bettini, L.R.; Sumoy, L.; Terranova, L.; Moreira, L.; Santoro, L.; Scudeller, L.; Mesonero, F.; Roade, L.; Rühlemann, M.C.; Schaefer, M.; Carrabba, M.; Riveiro-Barciela, M.; Figuera Basso, M.E.; Valsecchi, M.G.; Hernandez-Tejero, M.; Acosta-Herrera, M.; D’Angiò, M.; Baldini, M.; Cazzaniga, M.; Schulzky, M.; Cecconi, M.; Wittig, M.; Ciccarelli, M.; Rodríguez-Gandía, M.; Bocciolone, M.; Miozzo, M.; Montano, N.; Braun, N.; Sacchi, N.; Martínez, N.; Özer, O.; Palmieri, O.; Faverio, P.; Preatoni, P.; Bonfanti, P.; Omodei, P.; Tentorio, P.; Castro, P.; Rodrigues, P.M.; Blandino Ortiz, A.; de Cid, R.; Ferrer, R.; Gualtierotti, R.; Nieto, R.; Goerg, S.; Badalamenti, S.; Marsal, S.; Matullo, G.; Pelusi, S.; Juzenas, S.; Aliberti, S.; Monzani, V.; Moreno, V.; Wesse, T.; Lenz, T.L.; Pumarola, T.; Rimoldi, V.; Bosari, S.; Albrecht, W.; Peter, W.; Romero-Gómez, M.; D’Amato, M.; Duga, S.; Banales, J.M.; Hov, J.R.; Folseraas, T.; Valenti, L.; Franke, A.; Karlsen, T.H. Group SC-G. Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med., 2020, 383(16), 1522-1534.
[http://dx.doi.org/10.1056/NEJMoa2020283] [PMID: 32558485]
[79]
Takahashi, Y.; Kubo, R.; Sano, R.; Nakajima, T.; Takahashi, K.; Kobayashi, M.; Handa, H.; Tsukada, J.; Kominato, Y. Histone deacetylase inhibitors suppress ABO transcription in vitro, leading to reduced expression of the antigens. Transfusion, 2017, 57(3), 554-562.
[http://dx.doi.org/10.1111/trf.13958] [PMID: 28019030]
[80]
He, B.; Garmire, L. Prediction of repurposed drugs for treating lung injury in COVID-19. F1000 Res., 2020, 9, 609.
[http://dx.doi.org/10.12688/f1000research.23996.2] [PMID: 32934806]
[81]
Sinha, S.; Cheng, K.; Aldape, K.; Schiff, E.; Ruppin, E. Systematic cell line-based identification of drugs modifying ACE2 expression. Preprints, 2020, 2020030446.
[http://dx.doi.org/10.20944/preprints202003.0446.v1]
[82]
Pitt, B.; Sutton, N.R.; Wang, Z.; Goonewardena, S.N.; Holinstat, M. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur. J. Pharmacol., 2021, 898, 173988.
[http://dx.doi.org/10.1016/j.ejphar.2021.173988] [PMID: 33667455]
[83]
Singh, S.; Singh, K. Valproic acid in prevention and treatment of covid-19. Authorea Preprints, 2020.
[84]
Cui, Q; Huang, C; Ji, X; Zhang, W; Zhang, F; Wang, L. Possible inhibitors of ACE2, the receptor of 2019-nCoV. 2020.
[85]
Fortson, W.S.; Kayarthodi, S.; Fujimura, Y.; Xu, H.; Matthews, R.; Grizzle, W.E.; Rao, V.N.; Bhat, G.K.; Reddy, E.S. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells. Int. J. Oncol., 2011, 39(1), 111-119.
[PMID: 21519790]
[86]
Jin, J-M.; Bai, P.; He, W.; Wu, F.; Liu, X-F.; Han, D-M.; Liu, S.; Yang, J.K. Gender differences in patients with COVID-19: focus on severity and mortality. Front. Public Health, 2020, 8, 152.
[http://dx.doi.org/10.3389/fpubh.2020.00152] [PMID: 32411652]
[87]
Lucas, J.M.; Heinlein, C.; Kim, T.; Hernandez, S.A.; Malik, M.S.; True, L.D.; Morrissey, C.; Corey, E.; Montgomery, B.; Mostaghel, E.; Clegg, N.; Coleman, I.; Brown, C.M.; Schneider, E.L.; Craik, C.; Simon, J.A.; Bedalov, A.; Nelson, P.S. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov., 2014, 4(11), 1310-1325.
[http://dx.doi.org/10.1158/2159-8290.CD-13-1010] [PMID: 25122198]
[88]
Shirato, K.; Kawase, M.; Matsuyama, S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol., 2013, 87(23), 12552-12561.
[http://dx.doi.org/10.1128/JVI.01890-13] [PMID: 24027332]
[89]
Cetinkaya, M.; Cansev, M.; Cekmez, F.; Tayman, C.; Canpolat, F.E.; Kafa, I.M.; Yaylagul, E.O.; Kramer, B.W.; Sarici, S.U. Protective effects of valproic acid, a histone deacetylase inhibitor, against hyperoxic lung injury in a neonatal rat model. PLoS One, 2015, 10(5), e0126028.
[http://dx.doi.org/10.1371/journal.pone.0126028] [PMID: 25938838]
[90]
Bambakidis, T.; Dekker, S.E.; Halaweish, I.; Liu, B.; Nikolian, V.C.; Georgoff, P.E.; Piascik, P.; Li, Y.; Sillesen, M.; Alam, H.B. Valproic acid modulates platelet and coagulation function ex vivo. Blood Coagul. Fibrinolysis, 2017, 28(6), 479-484.
[http://dx.doi.org/10.1097/MBC.0000000000000626] [PMID: 28230635]
[91]
Larsson, P.; Alwis, I.; Niego, B.; Sashindranath, M.; Fogelstrand, P.; Wu, M.C.; Glise, L.; Magnusson, M.; Daglas, M.; Bergh, N.; Jackson, S.P.; Medcalf, R.L.; Jern, S. Valproic acid selectively increases vascular endothelial tissue-type plasminogen activator production and reduces thrombus formation in the mouse. J. Thromb. Haemost., 2016, 14(12), 2496-2508.
[http://dx.doi.org/10.1111/jth.13527] [PMID: 27706906]
[92]
Olesen, J.B.; Abildstrøm, S.Z.; Erdal, J.; Gislason, G.H.; Weeke, P.; Andersson, C.; Torp-Pedersen, C.; Hansen, P.R. Effects of epilepsy and selected antiepileptic drugs on risk of myocardial infarction, stroke, and death in patients with or without previous stroke: A nationwide cohort study. Pharmacoepidemiol. Drug Saf., 2011, 20(9), 964-971.
[http://dx.doi.org/10.1002/pds.2186] [PMID: 21766386]
[93]
Dregan, A.; Charlton, J.; Wolfe, C.D.; Gulliford, M.C.; Markus, H.S. Is sodium valproate, an HDAC inhibitor, associated with reduced risk of stroke and myocardial infarction? A nested case-control study. Pharmacoepidemiol. Drug Saf., 2014, 23(7), 759-767.
[http://dx.doi.org/10.1002/pds.3651] [PMID: 24890032]
[94]
Brookes, R.L.; Crichton, S.; Wolfe, C.D.A.; Yi, Q.; Li, L.; Hankey, G.J.; Rothwell, P.M.; Markus, H.S. Sodium valproate, a histone deacetylase inhibitor, is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke, 2018, 49(1), 54-61.
[http://dx.doi.org/10.1161/STROKEAHA.117.016674] [PMID: 29247141]
[95]
Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost., 2020, 18(7), 1738-1742.
[http://dx.doi.org/10.1111/jth.14850] [PMID: 32302438]
[96]
Greene, R.; Lind, S.; Jantsch, H.; Wilson, R.; Lynch, K.; Jones, R.; Carvalho, A.; Reid, L.; Waltman, A.C.; Zapol, W. Pulmonary vascular obstruction in severe ARDS: angiographic alterations after i.v. fibrinolytic therapy. AJR Am. J. Roentgenol., 1987, 148(3), 501-508.
[http://dx.doi.org/10.2214/ajr.148.3.501] [PMID: 3492876]
[97]
Manne, B.K.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; Weyrich, A.S.; Yost, C.C.; Rondina, M.T.; Campbell, R.A. Platelet gene expression and function in patients with COVID-19. Blood, 2020, 136(11), 1317-1329.
[http://dx.doi.org/10.1182/blood.2020007214] [PMID: 32573711]
[98]
Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; Li, W.W.; Li, V.W.; Mentzer, S.J.; Jonigk, D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med., 2020, 383(2), 120-128.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[99]
Iizuka, N.; Morita, A.; Kawano, C.; Mori, A.; Sakamoto, K.; Kuroyama, M.; Ishii, K.; Nakahara, T. Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. J. Pharmacol. Sci., 2018, 138(3), 203-208.
[http://dx.doi.org/10.1016/j.jphs.2018.10.004] [PMID: 30409713]
[100]
Zhao, Y.; You, W.; Zheng, J.; Chi, Y.; Tang, W.; Du, R. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals. Clin. Transl. Oncol., 2016, 18(11), 1123-1130.
[http://dx.doi.org/10.1007/s12094-016-1494-0] [PMID: 26942921]
[101]
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol., 2020, 5(7), 811-818.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[102]
Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA, 2020, 323(16), 1612-1614.
[http://dx.doi.org/10.1001/jama.2020.4326] [PMID: 32191259]
[103]
Scholz, B.; Schulte, J.S.; Hamer, S.; Himmler, K.; Pluteanu, F.; Seidl, M.D.; Stein, J.; Wardelmann, E.; Hammer, E.; Völker, U.; Müller, F.U. HDAC (histone deacetylase) inhibitor valproic acid attenuates atrial remodeling and delays the onset of atrial fibrillation in mice. Circ. Arrhythm. Electrophysiol., 2019, 12(3), e007071.
[http://dx.doi.org/10.1161/CIRCEP.118.007071] [PMID: 30879335]
[104]
Tian, S.; Lei, I.; Gao, W.; Liu, L.; Guo, Y.; Creech, J.; Herron, T.J.; Xian, S.; Ma, P.X.; Eugene Chen, Y.; Li, Y.; Alam, H.B.; Wang, Z. HDAC inhibitor valproic acid protects heart function through Foxm1 pathway after acute myocardial infarction. EBioMedicine, 2019, 39, 83-94.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.003] [PMID: 30552062]
[105]
Lee, H-A.; Lee, D-Y.; Cho, H-M.; Kim, S-Y.; Iwasaki, Y.; Kim, I.K. Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ. Res., 2013, 112(7), 1004-1012.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301071] [PMID: 23421989]
[106]
Kang, S-H.; Seok, Y.M.; Song, M.J.; Lee, H-A.; Kurz, T.; Kim, I. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol. Pharmacol., 2015, 87(5), 782-791.
[http://dx.doi.org/10.1124/mol.114.096974] [PMID: 25667225]
[107]
Kee, H.J.; Sohn, I.S.; Nam, K.I.; Park, J.E.; Qian, Y.R.; Yin, Z.; Ahn, Y.; Jeong, M.H.; Bang, Y.J.; Kim, N.; Kim, J.K.; Kim, K.K.; Epstein, J.A.; Kook, H. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation, 2006, 113(1), 51-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.559724] [PMID: 16380549]
[108]
Kook, H.; Lepore, J.J.; Gitler, A.D.; Lu, M.M.; Wing-Man Yung, W.; Mackay, J.; Zhou, R.; Ferrari, V.; Gruber, P.; Epstein, J.A. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J. Clin. Invest., 2003, 112(6), 863-871.
[http://dx.doi.org/10.1172/JCI19137] [PMID: 12975471]
[109]
Mannaerts, I.; Nuytten, N.R.; Rogiers, V.; Vanderkerken, K.; van Grunsven, L.A.; Geerts, A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology, 2010, 51(2), 603-614.
[http://dx.doi.org/10.1002/hep.23334] [PMID: 19957378]
[110]
Khan, S.; Jena, G.; Tikoo, K. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp. Mol. Pathol., 2015, 98(2), 230-239.
[http://dx.doi.org/10.1016/j.yexmp.2015.01.003] [PMID: 25576297]
[111]
Van Beneden, K.; Geers, C.; Pauwels, M.; Mannaerts, I.; Verbeelen, D.; van Grunsven, L.A.; Van den Branden, C. Valproic acid attenuates proteinuria and kidney injury. J. Am. Soc. Nephrol., 2011, 22(10), 1863-1875.
[http://dx.doi.org/10.1681/ASN.2010111196] [PMID: 21868496]
[112]
Kabel, A.M.; Omar, M.S.; Elmaaboud, M.A.A. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int. Immunopharmacol., 2016, 39, 335-342.
[http://dx.doi.org/10.1016/j.intimp.2016.08.008] [PMID: 27526269]
[113]
Korfei, M.; Skwarna, S.; Henneke, I.; MacKenzie, B.; Klymenko, O.; Saito, S.; Ruppert, C.; von der Beck, D.; Mahavadi, P.; Klepetko, W.; Bellusci, S.; Crestani, B.; Pullamsetti, S.S.; Fink, L.; Seeger, W.; Krämer, O.H.; Guenther, A. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax, 2015, 70(11), 1022-1032.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206411] [PMID: 26359372]
[114]
Wu, C.; Li, A.; Leng, Y.; Li, Y.; Kang, J. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets. DNA Cell Biol., 2012, 31(4), 592-599.
[http://dx.doi.org/10.1089/dna.2011.1401] [PMID: 22054065]
[115]
Jin, H.; Guo, X. Valproic acid ameliorates coxsackievirus-B3-induced viral myocarditis by modulating Th17/Treg imbalance. Virol. J., 2016, 13(1), 168.
[http://dx.doi.org/10.1186/s12985-016-0626-z] [PMID: 27724948]
[116]
Vázquez-Calvo, A.; Saiz, J-C.; Sobrino, F.; Martín-Acebes, M.A. Inhibition of enveloped virus infection of cultured cells by valproic acid. J. Virol., 2011, 85(3), 1267-1274.
[http://dx.doi.org/10.1128/JVI.01717-10] [PMID: 21106740]
[117]
Delgado, F.G.; Cárdenas, P.; Castellanos, J.E. Valproic acid downregulates cytokine expression in human macrophages infected with dengue virus. Diseases, 2018, 6(3), 59.
[http://dx.doi.org/10.3390/diseases6030059] [PMID: 29986388]
[118]
Wang, J.; Feng, H.; Zhang, J.; Jiang, H. Lithium and valproate acid protect NSC34 cells from H2O2-induced oxidative stress and upregulate expressions of SIRT3 and CARM1. Neuroendocrinol. Lett., 2013, 34(7), 648-654.
[PMID: 24464007]
[119]
D’Marco, L.; Puchades, M.J.; Romero-Parra, M.; Gimenez-Civera, E.; Soler, M.J.; Ortiz, A.; Gorriz, J.L. Coronavirus disease 2019 in chronic kidney disease. Clin. Kidney J., 2020, 13(3), 297-306.
[http://dx.doi.org/10.1093/ckj/sfaa104] [PMID: 32699615]
[120]
Wen, L.; Tang, K.; Chik, K.K-H.; Chan, C.C-Y.; Tsang, J.O-L.; Liang, R.; Cao, J.; Huang, Y.; Luo, C.; Cai, J.P.; Ye, Z.W.; Yin, F.; Chu, H.; Jin, D.Y.; Yuen, K.Y.; Yuan, S.; Chan, J.F. In silico structure-based discovery of a SARS-CoV-2 main protease inhibitor. Int. J. Biol. Sci., 2021, 17(6), 1555-1564.
[http://dx.doi.org/10.7150/ijbs.59191] [PMID: 33907519]
[121]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[122]
Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A.H. ++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res., 2005, 33(Suppl. 2), W368-71.
[http://dx.doi.org/10.1093/nar/gki464] [PMID: 15980491]
[123]
Raschka, S.; Wolf, A.J.; Bemister-Buffington, J.; Kuhn, L.A. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes. J. Comput. Aided Mol. Des., 2018, 32(4), 511-528.
[http://dx.doi.org/10.1007/s10822-018-0105-2] [PMID: 29435780]
[124]
Zavodszky, M.I.; Sanschagrin, P.C.; Korde, R.S.; Kuhn, L.A. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J. Comput. Aided Mol. Des., 2002, 16(12), 883-902.
[http://dx.doi.org/10.1023/A:1023866311551] [PMID: 12825621]
[125]
You, W.; Steegborn, C. Structural basis of sirtuin 6 inhibition by the hydroxamate trichostatin A: Implications for protein deacylase drug development. J. Med. Chem., 2018, 61(23), 10922-10928.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01455] [PMID: 30395713]
[126]
Vanhaecke, T.; Papeleu, P.; Elaut, G.; Rogiers, V. Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr. Med. Chem., 2004, 11(12), 1629-1643.
[http://dx.doi.org/10.2174/0929867043365099] [PMID: 15180568]
[127]
Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol., 2004, 11(10), 1445-1453.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.011] [PMID: 15489171]
[128]
Vuong, W.; Khan, M.B.; Fischer, C.; Arutyunova, E.; Lamer, T.; Shields, J. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun., 2020, 11(1), 1-8.
[PMID: 31911652]
[129]
Zhu, Z.; Chu, H.; Wen, L.; Yuan, S.; Chik, K.K-H.; Yuen, T.T-T.; Yip, C.C.; Wang, D.; Zhou, J.; Yin, F.; Jin, D.Y.; Kok, K.H.; Yuen, K.Y.; Chan, J.F. Targeting SUMO modification of the non-structural protein 5 of Zika virus as a host-targeting antiviral strategy. Int. J. Mol. Sci., 2019, 20(2), 392.
[http://dx.doi.org/10.3390/ijms20020392] [PMID: 30658479]
[130]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F.; Cao, J.; Poon, V.K.; Herbert, K.M.; Cheng, K.; Nguyen, T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K.Y.; Martinez-Sobrido, L.; Liu, W.C.; White, K.M.; Chapman, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K.Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[131]
Yuan, S.; Chan, J.F.W.; Chik, K.K.H.; Chan, C.C.Y.; Tsang, J.O.L.; Liang, R.; Cao, J.; Tang, K.; Chen, L.L.; Wen, K.; Cai, J.P.; Ye, Z.W.; Lu, G.; Chu, H.; Jin, D.Y.; Yuen, K.Y. Discovery of the FDA-approved drugs bexarotene, cetilistat, diiodohydroxyquinoline, and abiraterone as potential COVID-19 treatments with a robust two-tier screening system. Pharmacol. Res., 2020, 159, 104960.
[http://dx.doi.org/10.1016/j.phrs.2020.104960] [PMID: 32473310]
[132]
Tsang, J.O-L.; Zhou, J.; Zhao, X.; Li, C.; Zou, Z.; Yin, F.; Yuan, S.; Yeung, M.L.; Chu, H.; Chan, J.F. Development of three-dimensional human intestinal organoids as a physiologically relevant model for characterizing the viral replication kinetics and antiviral susceptibility of enteroviruses. Biomedicines, 2021, 9(1), 88.
[http://dx.doi.org/10.3390/biomedicines9010088] [PMID: 33477611]
[133]
Yuan, S.; Chan, C.C-Y.; Chik, K.K-H.; Tsang, J.O-L.; Liang, R.; Cao, J.; Tang, K.; Cai, J.P.; Ye, Z.W.; Yin, F.; To, K.K.; Chu, H.; Jin, D.Y.; Hung, I.F.; Yuen, K.Y.; Chan, J.F. Broad-spectrum host-based antivirals targeting the interferon and lipogenesis pathways as potential treatment options for the pandemic coronavirus disease 2019 (COVID-19). Viruses, 2020, 12(6), 628.
[http://dx.doi.org/10.3390/v12060628] [PMID: 32532085]
[134]
Yuan, S.; Chu, H.; Zhao, H.; Zhang, K.; Singh, K.; Chow, B.K.; Kao, R.Y.; Zhou, J.; Zheng, B.J. Identification of a small-molecule inhibitor of influenza virus via disrupting the subunits interaction of the viral polymerase. Antiviral Res., 2016, 125, 34-42.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.005] [PMID: 26593979]
[135]
Chan, J.F-W.; Chik, K.K-H.; Yuan, S.; Yip, C.C-Y.; Zhu, Z.; Tee, K-M.; Tsang, J.O.; Chan, C.C.; Poon, V.K.; Lu, G.; Zhang, A.J.; Lai, K.K.; Chan, K.H.; Kao, R.Y.; Yuen, K.Y. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res., 2017, 141, 29-37.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.002] [PMID: 28185815]
[136]
Salvador, L.A.; Luesch, H. Discovery and mechanism of natural products as modulators of histone acetylation. Curr. Drug Targets, 2012, 13(8), 1029-1047.
[http://dx.doi.org/10.2174/138945012802008973] [PMID: 22594471]
[137]
Hamze, A. How do we improve histone deacetylase inhibitor drug discovery?; Taylor & Francis, 2020, pp. 527-529.
[138]
Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel), 2010, 3(9), 2751-2767.
[http://dx.doi.org/10.3390/ph3092751] [PMID: 27713375]