Revisiting Purine Nucleoside Cholinesterase Inhibitors - An Experimental Glycon Structure/Activity Relationship Study

Page: [263 - 275] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: A new family of purine nucleoside cholinesterase inhibitors was disclosed by us, with potency and selectivity over acetylcholinesterase or butyrylcholinesterase controlled by tuning structural and stereochemical features of nucleosides with perbenzylated glycosyl moieties.

Objective: Design, synthesis, and biological evaluation of new purine nucleosides were used to investigate glycon protecting group pattern required for anticholinesterase activity and selectivity.

Methods: Regioselective chemistry to introduce methyl/benzyl groups in glycon donors and Nglycosylation was used to acquire the target nucleosides. Evaluation of their biological potential and selectivity as cholinesterase inhibitors was performed.

Results: Synthetic strategies chosen resulted in high glycon donor's overall yield and regio- and stereoselectivity was found in N-glycosylation reaction. Some of the new nucleosides are cholinesterase inhibitors and selectivity for butyrylcholinesterase was also achieved.

Conclusion: N-glycosylation reaction was stereoselective for the β-anomers while regioselectivity was achieved for the N9 isomers when glycon positions 2 and 3 were methylated. Cholinesterase inhibition was found when the 2,3-di-O-benzyl-4-O-methyl pattern is present in the sugar moiety. Amongst the new compounds, the two most promising ones showed micromolar inhibition (mixed inhibition), being one of them selective for butyrylcholinesterase inhibition.

Keywords: Purine nucleosides, stereoselective synthesis, anticholinesterase activity, selectivity, AD, ACht.

Graphical Abstract

[1]
Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int. J. Mol. Sci., 2021, 22(17), 9290.
[2]
Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol., 2018, 153, 205-216.
[http://dx.doi.org/10.1016/j.bcp.2018.01.044] [PMID: 29409903]
[3]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[4]
Vecchio, I.; Sorrentino, L.; Paoletti, A.; Marra, R.; Arbitrio, M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J. Cent. Nerv. Syst. Dis., 2021, 13, 1-13.
[http://dx.doi.org/10.1177/11795735211029113]
[5]
Hamley, I.W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev., 2012, 112(10), 5147-5192.
[http://dx.doi.org/10.1021/cr3000994] [PMID: 22813427]
[6]
Nygaard, H.B. Targeting Fyn kinase in Alzheimer’s disease. Biol. Psychiatry, 2018, 83(4), 369-376.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.004] [PMID: 28709498]
[7]
de Matos, A.M.; Blázquez-Sánchez, M.T.; Bento-Oliveira, A.; de Almeida, R.F.M.; Nunes, R.; Lopes, P.E.M.; Machuqueiro, M.; Cristóvão, J.S.; Gomes, C.M.; Souza, C.S.; El Idrissi, I.G.; Colabufo, N.A.; Diniz, A.; Marcelo, F.; Oliveira, M.C.; López, Ó.; Fernandez-Bolaños, J.G.; Dätwyler, P.; Ernst, B.; Ning, K.; Garwood, C.; Chen, B.; Rauter, A.P. Glucosylpolyphenols as inhibitors of aβ-induced FYN kinase activation and tau phosphorylation: Synthesis, membrane permeability, and exploratory target assessment within the scope of type 2 diabetes and Alzheimer’s disease. J. Med. Chem., 2020, 63(20), 11663-11690.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00841] [PMID: 32959649]
[8]
Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol., 1978, 4(4), 273-277.
[http://dx.doi.org/10.1111/j.1365-2990.1978.tb00545.x] [PMID: 703927]
[9]
Giacobini, E. Cholinergic function and Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2003, 18(S1)(Suppl. 1), S1-S5.
[http://dx.doi.org/10.1002/gps.935] [PMID: 12973744]
[10]
Mesulam, M.M.; Geula, C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol., 1994, 36(5), 722-727.
[http://dx.doi.org/10.1002/ana.410360506] [PMID: 7979218]
[11]
DeBay, D.R.; Reid, G.A.; Pottie, I.R.; Martin, E.; Bowen, C.V.; Darvesh, S. Targeting butyrylcholinesterase for preclinical Single Photon Emission Computed Tomography (SPECT) imaging of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2017, 3(2), 166-176.
[http://dx.doi.org/10.1016/j.trci.2017.01.005] [PMID: 29067326]
[12]
Greig, N.H.; Utsuki, T.; Yu, Q.; Zhu, X.; Holloway, H.W.; Perry, T.; Lee, B.; Ingram, D.K.; Lahiri, D.K. A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin., 2001, 17(3), 159-165.
[http://dx.doi.org/10.1185/03007990152673800] [PMID: 11900310]
[13]
Zarotsky, V.; Sramek, J.J.; Cutler, N.R. Galantamine hydrobromide: An agent for Alzheimer’s disease. Am. J. Health Syst. Pharm., 2003, 60(5), 446-452.
[http://dx.doi.org/10.1093/ajhp/60.5.446] [PMID: 12635450]
[14]
Sugimoto, H. Structure-activity relationships of acetylcholinesterase inhibitors: Donepezil hydrochloride for the treatment of Alzheimer’s disease. Pure Appl. Chem., 1999, 71(11), 2031-2037.
[http://dx.doi.org/10.1351/pac199971112031]
[15]
Sugimoto, H.; Yamanishi, Y.; Iimura, Y.; Kawakami, Y. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr. Med. Chem., 2000, 7(3), 303-339.
[http://dx.doi.org/10.2174/0929867003375191] [PMID: 10637367]
[16]
Jann, M.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy, 2000, 20(1), 1-12.
[http://dx.doi.org/10.1592/phco.20.1.1.34664] [PMID: 10641971]
[17]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[18]
Reid, G.A.; Darvesh, S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience, 2015, 298, 424-435.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.039] [PMID: 25931333]
[19]
Darvesh, S.; Reid, G.A. Reduced fibrillar β-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem. Biol. Interact. 2016, 259(Pt B), 307-312.
[http://dx.doi.org/10.1016/j.cbi.2016.04.022] [PMID: 27091549]
[20]
Marcelo, F.; Silva, F.V.M.; Goulart, M.; Justino, J.; Sinaÿ, P.; Blériot, Y.; Rauter, A.P. Synthesis of novel purine nucleosides towards a selective inhibition of human butyrylcholinesterase. Bioorg. Med. Chem., 2009, 17(14), 5106-5116.
[http://dx.doi.org/10.1016/j.bmc.2009.05.057] [PMID: 19520578]
[21]
Schwarz, S.; Csuk, R.; Rauter, A.P. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors. Org. Biomol. Chem., 2014, 12(15), 2446-2456.
[http://dx.doi.org/10.1039/C4OB00142G] [PMID: 24604285]
[22]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[23]
Cachatra, V.; Almeida, A.; Sardinha, J.; Lucas, S.D.; Gomes, A.; Vaz, P.D.; Florêncio, M.H.; Nunes, R.; Vila-Viçosa, D.; Calhorda, M.J.; Rauter, A.P. Wittig reaction: Domino olefination and stereoselectivity DFT study. Synthesis of the miharamycins’ bicyclic sugar moiety. Org. Lett., 2015, 17(22), 5622-5625.
[http://dx.doi.org/10.1021/acs.orglett.5b02849] [PMID: 26551053]
[24]
Daragics, K.; Fügedi, P. Regio- and chemoselective reductive cleavage of 4,6-O-benzylidene-type acetals of hexopyranosides using BH3·THF–TMSOTf. Tetrahedron Lett., 2009, 50(24), 2914-2916.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.194]
[25]
Morikawa, Y.; Kinoshita, H.; Asahi, M.; Takasu, A.; Hirabayashi, T. Tailor-made amphiphilic biodegradable polymer-gels: 1.gel preparation via controlled ring-opening polymerization using glucopyranoside as initiator and subsequent coupling with α,ω-Bifunctional PEG. Polym. J., 2008, 40(3), 217-222.
[http://dx.doi.org/10.1295/polymj.PJ2007174]
[26]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[27]
Roldán-Peña, J.M.; Romero-Real, V.; Hicke, J.; Maya, I.; Franconetti, A.; Lagunes, I.; Padrón, J.M.; Petralla, S.; Poeta, E.; Naldi, M.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; López, Ó.; Fernández-Bolaños, J.G. Tacrine-O-protected phenolics heterodimers as multitarget-directed ligands against Alzheimer’s disease: Selective subnanomolar BuChE inhibitors. Eur. J. Med. Chem., 2019, 181, 111550.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.053] [PMID: 31376562]
[28]
Rao, K.V.; Patil, P.R.; Atmakuri, S.; Kartha, K.P.R. Iodine-sodium cyanoborohydride-mediated reductive ring opening of 4,6-O-benzylidene acetals of hexopyranosides. Carbohydr. Res., 2010, 345(18), 2709-2713.
[http://dx.doi.org/10.1016/j.carres.2010.10.013] [PMID: 21055729]
[29]
Fernandes, R.A.; Gholap, S.P.; Mulay, S.V. A facile chemoselective deprotection of aryl silyl ethers using sodium hydride/DMF and in situ protection of phenol with various groups. RSC Advances, 2014, 4(32), 16438-16443.
[http://dx.doi.org/10.1039/C4RA00842A]
[30]
Kaspar, F.; Stone, M.R.L.; Neubauer, P.; Kurreck, A. Route efficiency assessment and review of the synthesis of β-nucleosides via N-glycosylation of nucleobases. Green Chem., 2021, 23(1), 37-50.
[http://dx.doi.org/10.1039/D0GC02665D]
[31]
de Sousa, E.C.; Rauter, A.P. Nucleobase coupling by Mitsunobu reaction towards nucleoside analogs. ARKIVOC, 2021, iv, 241-267.
[32]
Tranová, L.; Stýskala, J. Study of the N7 regioselective glycosylation of 6-chloropurine and 2,6-dichloropurine with tin and titanium tetrachloride. J. Org. Chem., 2021, 86(19), 13265-13275.
[http://dx.doi.org/10.1021/acs.joc.1c01186] [PMID: 34528791]
[33]
Xavier, N.M. Porcheron, A.; Batista, D.; Jorda, R.; Řezníčková, E.; Kryštof, V.; Oliveira, M.C. Exploitation of new structurally diverse d-glucuronamide-containing N-glycosyl compounds: Synthesis and anticancer potential. Org. Biomol. Chem., 2017, 15(21), 4667-4680.
[http://dx.doi.org/10.1039/C7OB00472A] [PMID: 28517004]
[34]
Suthagar, K.; Polson, M.I.J.; Fairbanks, A.J. Unexpected furanose/pyranose equilibration of N-glycosyl sulfonamides, sulfamides and sulfamates. Org. Biomol. Chem., 2015, 13(23), 6573-6579.
[http://dx.doi.org/10.1039/C5OB00851D] [PMID: 25982459]