Propranolol as a Model Drug to Treat Smoking Cessation and its Formulation as a Transdermal Patch for Effective Management

Page: [1243 - 1263] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Smoking causes cancer, heart attacks, and stroke and leads to asthma and breathing problems. Nicotine replacement therapy (NRT) is considered one of the most widely accepted methods to quit smoking. However, it can lead to relapsed physical and psychological dependence.

Aim: The present study aimed to explore propranolol, as a model drug to treat relapsed physical and psychological dependence due to NRT in smoking cessation. Furthermore, for its effective management, the transdermal drug delivery system has opted for the effective and long-term release of propranolol.

Objective: The objective of the present study was to investigate and establish the molecular associations between propranolol with different targets associated with smoking cessation.

Materials and Methods: The molecular association of propranolol with eight different potential targets, namely, Acetylcholine Binding Protein (AChBP), Cannabinoid Receptor, CB1 and CB2, Monoamine oxidase (MAO), human dopamine D3 receptor, kainite, Leu- biogenic amine transporters (BAT) and α- type peroxisome proliferator-activated receptor, was studied via molecular simulation models. Polymeric films containing propranolol HCI were prepared and evaluated to select a suitable formulation for developing transdermal drug delivery systems (TDDS). Films containing different ratios of HPMC K4M, HPMC 15M, and Sodium CMC were prepared by the solvent evaporation technique using PEG 4000 incorporated as a plasticizer, and SLS was used to act as a penetration enhancer. Manufactured transdermal films were physically evaluated for thickness, weight uniformity %, moisture content %, moisture uptake %, drug content % and folding endurance.

Results: Results indicated that propranolol can interact with all eight receptors at the active binding site. It was found to show considerable interaction with Acetylcholine Binding Protein (AChBP), MAO, human dopamine D3 receptor, kainite, and Leu- biogenic amine transporters (BAT) with the binding energy of -6.27, -6.74, -7.07, -6.84, and -6.63 kcal/mol, respectively. The release rate of propranolol HCI decreased linearly with increasing polymer concentration in the film and depended on the film thickness. In contrast, the quantity of drug release was proportional to the square root of time. Kinetic data based on the release exponent, ‘n’ in the Peppas model showed that n values were between 0.95 and 1.08, indicating that drug release from polymer matrix was predominantly by diffusion with swelling.

Conclusion: Transdermal drug delivery of propranolol could act as a potential regulator of all studied targets associated with physical and psychological dependence associated with NRT and smoking cessation. Furthermore, propranolol-loaded transdermal patches with optimized release could be utilized to deliver the drug with optimum bioavailability for a considerable time.

Keywords: Propranolol, Smoking, Nicotine replacement therapy (NRT), Psychological, polymer, Molecular, Transdermal drug delivery system.

Graphical Abstract

[1]
Nagano, T.; Katsurada, M.; Yasuda, Y.; Kobayashi, K.; Nishimura, Y. Current pharmacologic treatments for smoking cessation and new agents undergoing clinical trials. Ther. Adv. Respir. Dis., 2019, 13, 1753466619875925.
[http://dx.doi.org/10.1177/1753466619875925] [PMID: 31533544]
[2]
Tam, J.; Warner, K.E.; Zivin, K.; Taylor, G.M.J.; Meza, R. The potential impact of widespread cessation treatment for smokers with depression. Am. J. Prev. Med., 2021, 61(5), 674-682.
[http://dx.doi.org/10.1016/j.amepre.2021.04.024] [PMID: 34244005]
[3]
Antoniu, S.A.; Buculei, I.; Mihaltan, F.; Crisan Dabija, R.; Trofor, A.C. Pharmacological strategies for smoking cessation in patients with chronic obstructive pulmonary disease: A pragmatic review. Expert Opin. Pharmacother., 2021, 22(7), 835-847.
[http://dx.doi.org/10.1080/14656566.2020.1858796] [PMID: 33372557]
[4]
Gorini, G. Smoking cessation methods and their effectiveness. Tabaccologia., 2021, 19(2), 26-34.
[http://dx.doi.org/10.53127/tblg-2021-A015]
[5]
Alduraywish, S.A.; Alnofaie, M.F.; Alrajhi, B.F.; Balsharaf, F.A.; Alblaihed, S.S.; Alsowigh, A.A.; Alotaibi, W.S.; Aldakheel, F.M. Knowledge, attitude, and beliefs toward group behavior therapy programs among male adults attending smoking cessation clinics, cross-sectional analysis. BMC Public Health, 2021, 21(1), 868.
[http://dx.doi.org/10.1186/s12889-021-10924-4] [PMID: 33952245]
[6]
Zhou, F.M.; Liang, Y.; Dani, J.A. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci., 2001, 4(12), 1224-1229.
[http://dx.doi.org/10.1038/nn769] [PMID: 11713470]
[7]
Tomkins, D.M.; Sellers, E.M. Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence. CMAJ, 2001, 164(6), 817-821.
[PMID: 11276551]
[8]
McDaid, L.; Thomson, R.; Emery, J.; Coleman, T.; Cooper, S.; Phillips, L.; Bauld, L.; Naughton, F. Understanding pregnant women’s adherence-related beliefs about Nicotine Replacement Therapy for smoking cessation: A qualitative study. Br. J. Health Psychol., 2021, 26(1), 179-197.
[http://dx.doi.org/10.1111/bjhp.12463] [PMID: 32860647]
[9]
Bonevski, B.; Manning, V.; Wynne, O.; Gartner, C.; Borland, R.; Baker, A.L.; Segan, C.J.; Skelton, E.; Moore, L.; Bathish, R.; Chiu, S.; Guillaumier, A.; Lubman, D.I. QuitNic: A pilot randomized controlled trial comparing nicotine vaping products with nicotine replacement therapy for smoking cessation following residential detoxification. Nicotine Tob. Res., 2021, 23(3), 462-470.
[http://dx.doi.org/10.1093/ntr/ntaa143] [PMID: 32770246]
[10]
DiFranza, J.R.; Rigotti, N.A.; McNeill, A.D.; Ockene, J.K.; Savageau, J.A.; St Cyr, D.; Coleman, M. Initial symptoms of nicotine dependence in adolescents. Tob. Control, 2000, 9(3), 313-319.
[http://dx.doi.org/10.1136/tc.9.3.313] [PMID: 10982576]
[11]
Mansvelder, H.D.; McGehee, D.S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 2000, 27(2), 349-357.
[http://dx.doi.org/10.1016/S0896-6273(00)00042-8] [PMID: 10985354]
[12]
Quinn, M.H.; Olonoff, M.; Bauer, A.M.; Fox, E.; Jao, N.; Lubitz, S.F.; Leone, F.; Gollan, J.K.; Schnoll, R.; Hitsman, B. History and correlates of smoking cessation behaviors among individuals with current or past major depressive disorder enrolled in a smoking cessation trial. Nicotine Tob. Res., 2022, 24(1), 37-43.
[PMID: 34259871]
[13]
Gubner, NR; Benowitz, NL Neurobiology of nicotine and tobacco. The American Psychiatric Association published Textbook of Substance Use Disorder Treatment, 2021.
[http://dx.doi.org/10.1176/appi.books.9781615373970.kb18]
[14]
Donny, E.C.; White, C.M. A review of the evidence on cigarettes with reduced addictiveness potential. Int. J. Drug Policy, 2022, 99, 103436.
[http://dx.doi.org/10.1016/j.drugpo.2021.103436] [PMID: 34535366]
[15]
Sumithrarachchi, S.R.; Jayasinghe, R.; Warnakulasuriya, S. Betel quid addiction: A review of its addiction mechanisms and pharmacological management as an emerging modality for habit cessation. Subst. Use Misuse, 2021, 56(13), 2017-2025.
[http://dx.doi.org/10.1080/10826084.2021.1963990] [PMID: 34396897]
[16]
Rao, P.R.; Ramakrishna, S.; Diwan, P.V. Drug release kinetics from polymeric films containing propranolol hydrochloride for transdermal use. Pharm. Dev. Technol., 2000, 5(4), 465-472.
[http://dx.doi.org/10.1081/PDT-100102030] [PMID: 11109246]
[17]
Kardile, S.D.; Firodiya, S.R.; Ghule, P.J. Formulation and evaluation of transdermal patch of propranolol hydrochloride. International Journal of Pharmaceutics & Drug Analysis., 2017, 5(4), 144-152.
[18]
Parhi, R.; Padilam, S. In vitro permeation and stability studies on the developed drug-in-adhesive transdermal patch of simvastatin. Bull. Fac. Pharm. Cairo Univ., 2018, 56(1), 26-33.
[http://dx.doi.org/10.1016/j.bfopcu.2018.04.001]
[19]
Jatav, VS; Saggu, JS; Sharma, AK; Singh, SK Effect of dimethyl sulphoxides as permeation enhancer on transdermal patch of nebivolol hydrochloride. Asian J Res Pharm Sci, 2013, 3(1), 08-11.
[20]
Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In vitro drug release, permeability, and structural test of ciprofloxacin-loaded nanofibers. Pharmaceutics, 2021, 13(4), 556.
[http://dx.doi.org/10.3390/pharmaceutics13040556] [PMID: 33921031]
[21]
Kumar, M; Trivedi, V; Shukla, AK; Dev, SK Effect of polymers on the physicochemical and drug release properties of transdermal patches of atenolol. Int. J. Appl. Pharm., 2018, 68-73.
[http://dx.doi.org/10.22159/ijap.2018v10i4.24916]
[22]
Singh, A.; Bali, A. Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride. J. Anal. Sci. Technol., 2016, 7(1), 1-3.
[http://dx.doi.org/10.1186/s40543-016-0105-6]
[23]
Saravanan, G.; Irisappan, S.C.; Jayaveera, K.N. Formulation by 23 factorial design and evaluation of controlled release transdermal patches of metoprolol succinate. J. Pharm. Res., 2014, 8(2), 167-173.
[24]
Vora, N.; Lin, S.; Madan, P.L. Development and in vitro evaluation of an optimized carvedilol transdermal therapeutic system using an experimental design approach. Asian J. Pharm. Sci., 2013, 8(1), 28-38.
[http://dx.doi.org/10.1016/j.ajps.2013.07.004]
[25]
Shinde, A.J.; Garala, K.C.; Garala, R.J. Effect of cross-linking agent on the release of drug from the transdermal matrix patches of tramadol hydrochloride. Res. J. Pharm Tech., 2008, 1(3), 187-192.
[26]
Krishna, R.; Pandit, J.K. Transdermal delivery of propranolol. Drug Dev. Ind. Pharm., 1994, 20(15), 2459-2465.
[http://dx.doi.org/10.3109/03639049409042650]
[27]
Dey, B.K.; Kar, P.K.; Nath, L.K. Formulation design, preparation and in vitro – in vivo evaluation of propranolol hydrochloride transdermal patches using hydrophilic and hydrophobic polymer complex. Research J. Pharm. and Tech., 2009, 2(1), 155-160.
[28]
Monika, B.; Amit, R.; Sanjib, B.; Alisha, B.; Mihir, P.; Dhanushram, T. Transdermal drug delivery system with formulation and evaluation aspects: Overview. Res. J. Pharm. Technol., 2012, 5(9), 1168-1176.
[29]
Cherukuri, S.; Batchu, U.R.; Mandava, K.; Cherukuri, V.; Ganapuram, K.R. Formulation and evaluation of transdermal drug delivery of topiramate. Int. J. Pharm. Investig., 2017, 7(1), 10-17.
[http://dx.doi.org/10.4103/jphi.JPHI_35_16] [PMID: 28405574]
[30]
Shailesh, T. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharm., 2011, 2011, 651909.
[31]
Singh, S.K.; Yadav, A.K.; Garg, V.; Gulati, M.; Bansal, P.; Bansal, K.; Kaur, P.; Mittal, A.; Narang, R. Design and performance verification of newly developed disposable static diffusion cell for drug diffusion/permeability studies. Asian J. Pharm. Clin. Res., 2018, 11(20), 1-7.
[32]
Das, A.; Ghosh, S.; Das, S.; Dey, B.K.; Ghosh, T.K. Formulation and in vitro evaluation of transdermal patches of metformin hydrochloride using hydrophilic and hydrophobic polymer complex. Res. J. Pharm. Technol., 2011, 4(4), 561-565.
[33]
Lakshmana, M.G.; Raghu Vamsi, V.; Tirumala, D.; Narendra Babu, N.; Sravya, Ch.; Masthaniah, K.; Shaik, H.R.; Kranti Kumar, P. Design and evaluation of diclofenac sodium buccal mucoadhesive film by solvent casting technique. Int. J. Pharm. Sci. Res., 2014, 5(5), 1767-1775.
[34]
Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathematical models of drug dissolution: A review. Sch. Acad. J. Pharm., 2014, 3(5), 388-396.
[35]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[36]
Singhvi, G.; Singh, M. In vitro drug release characterization models. Int J Pharm Stud Res., 2011, 2(1), 77-84.
[37]
Nikolaos, A. Peppas and Philip L. Ritger. A Simple Equation for Description of Solute Release II. Fickian and anomalous release from swellable devices. J. Control. Release, 1987, 5(1), 37-42.
[http://dx.doi.org/10.1016/0168-3659(87)90035-6]
[38]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[39]
Rucktooa, P.; Haseler, C.A.; van Elk, R.; Smit, A.B.; Gallagher, T.; Sixma, T.K. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein. J. Biol. Chem., 2012, 287(28), 23283-23293.
[http://dx.doi.org/10.1074/jbc.M112.360347] [PMID: 22553201]
[40]
Shahsavar, A.; Gajhede, M.; Kastrup, J.S.; Balle, T. Structural studies of nicotinic acetylcholine receptors: Using acetylcholine‐binding protein as a structural surrogate. Basic Clin. Pharmacol. Toxicol., 2016, 118(6), 399-407.
[http://dx.doi.org/10.1111/bcpt.12528] [PMID: 26572235]
[41]
Hua, T.; Vemuri, K.; Pu, M.; Qu, L.; Han, G.W.; Wu, Y.; Zhao, S.; Shui, W.; Li, S.; Korde, A.; Laprairie, R.B.; Stahl, E.L.; Ho, J.H.; Zvonok, N.; Zhou, H.; Kufareva, I.; Wu, B.; Zhao, Q.; Hanson, M.A.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structure of the human cannabinoid receptor CB1. Cell, 2016, 167(3), 750-762.e14.
[http://dx.doi.org/10.1016/j.cell.2016.10.004] [PMID: 27768894]
[42]
Craft, S.; Ferris, J.A.; Barratt, M.J.; Maier, L.J.; Lynskey, M.T.; Winstock, A.R.; Freeman, T.P. Clinical withdrawal symptom profile of synthetic cannabinoid receptor agonists and comparison of effects with high potency cannabis. Psychopharmacology (Berl.), 2021, 1-9.
[http://dx.doi.org/10.1007/s00213-021-05945-1] [PMID: 34533608]
[43]
Cahill, K.; Ussher, M.H. Cannabinoid type 1 receptor antagonists for smoking cessation. Cochrane Database Syst. Rev., 2011, 2011(3), CD005353.
[http://dx.doi.org/10.1002/14651858.CD005353.pub4] [PMID: 21412887]
[44]
Navarrete, F.; Rodríguez-Arias, M.; Martín-García, E.; Navarro, D.; García-Gutiérrez, M.S.; Aguilar, M.A.; Aracil-Fernández, A.; Berbel, P.; Miñarro, J.; Maldonado, R.; Manzanares, J. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology, 2013, 38(12), 2515-2524.
[http://dx.doi.org/10.1038/npp.2013.157] [PMID: 23817165]
[45]
George, T.P.; Weinberger, A.H. Monoamine oxidase inhibition for tobacco pharmacotherapy. Clin. Pharmacol. Ther., 2008, 83(4), 619-621.
[http://dx.doi.org/10.1038/sj.clpt.6100474] [PMID: 18091758]
[46]
El-Boraie, A.; Tyndale, R.F. The role of pharmacogenetics in smoking. Clin. Pharmacol. Ther., 2021, 110(3), 599-606.
[http://dx.doi.org/10.1002/cpt.2345] [PMID: 34165800]
[47]
Le Foll, B.; Goldberg, S.R.; Sokoloff, P. Dopamine D3 receptor ligands for the treatment of tobacco dependence. Expert Opin. Investig. Drugs, 2007, 16(1), 45-57.
[http://dx.doi.org/10.1517/13543784.16.1.45] [PMID: 17155853]
[48]
Ashby, C. The selective dopamine D3 receptor antagonist SB277011A reduces nicotine-enhanced brain reward and nicotine pair. 2021.
[49]
Khazaal, Y.; Cornuz, J.; Bilancioni, R.; Zullino, D.F. Topiramate for smoking cessation. Psychiatry Clin. Neurosci., 2006, 60(3), 384-388.
[http://dx.doi.org/10.1111/j.1440-1819.2006.01518.x] [PMID: 16732758]
[50]
Ruda-Kucerova, J.; Amchova, P.; Siska, F.; Tizabi, Y. NBQX attenuates relapse of nicotine seeking but not nicotine and methamphetamine self-administration in rats. World J. Biol. Psychiatry, 2021, 22(10), 733-743.
[http://dx.doi.org/10.1080/15622975.2021.1907714] [PMID: 33787469]
[51]
Kenny, P.J.; Chartoff, E.; Roberto, M.; Carlezon, W.A., Jr; Markou, A. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology, 2009, 34(2), 266-281.
[http://dx.doi.org/10.1038/npp.2008.58] [PMID: 18418357]
[52]
Li, X.; Semenova, S.; D’Souza, M.S.; Stoker, A.K.; Markou, A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation Neuropharmacology, 2014, 76, Pt B, 554-.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.042] [PMID: 23752091]
[53]
Stojakovic, A.; Ahmad, S.M.; Lutfy, K. Alterations of amphetamine reward by prior nicotine and alcohol treatment: The role of age and dopamine. Brain Sci., 2021, 11(4), 420.
[http://dx.doi.org/10.3390/brainsci11040420] [PMID: 33810331]
[54]
Danielson, K.; Truman, P.; Kivell, B.M. The effects of nicotine and cigarette smoke on the monoamine transporters. Synapse, 2011, 65(9), 866-879.
[http://dx.doi.org/10.1002/syn.20914] [PMID: 21308797]
[55]
Glazova, N.Y.; Manchenko, D.M.; Volodina, M.A.; Merchieva, S.A.; Andreeva, L.A.; Kudrin, V.S.; Myasoedov, N.F.; Levitskaya, N.G. Semax, synthetic ACTH(4-10) analogue, attenuates behavioural and neurochemical alterations following early-life fluvoxamine exposure in white rats. Neuropeptides, 2021, 86, 102114.
[http://dx.doi.org/10.1016/j.npep.2020.102114] [PMID: 33418449]
[56]
Mascia, P.; Pistis, M.; Justinova, Z.; Panlilio, L.V.; Luchicchi, A.; Lecca, S.; Scherma, M.; Fratta, W.; Fadda, P.; Barnes, C.; Redhi, G.H.; Yasar, S.; Le Foll, B.; Tanda, G.; Piomelli, D.; Goldberg, S.R. Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol. Psychiatry, 2011, 69(7), 633-641.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.009] [PMID: 20801430]
[57]
Gendy, M.N.S.; Di Ciano, P.; Kowalczyk, W.J.; Barrett, S.P.; George, T.P.; Heishman, S.; Le Foll, B. Testing the PPAR hypothesis of tobacco use disorder in humans: A randomized trial of the impact of gemfibrozil (a partial PPARα agonist) in smokers. PLoS One, 2018, 13(9), e0201512.
[http://dx.doi.org/10.1371/journal.pone.0201512] [PMID: 30260990]
[58]
Indira Muzib, Y.; Lavanya, T. Design and evaluation of stavudine transdermal patches using hydrophilic and hydrophobic polymers. J. Pharm. Res., 2012, 5(2), 1176-1182.
[59]
Gairola, A.; Chaurasia, U.; Singh, A.; Saharan, V.A. Development and evaluation of transdermal patches of aceclofenac. Thaiphesatchasan, 2014, 38(2)
[60]
Saraswathi, R.; Krishnan, P.N.; Dilip, C.; Shabir Ali, T.K. Formulation and evaluation of transdermal patches of curcumin. Pharm. Lett., 2010, 2(5), 117-126.
[61]
Mahajan, N.M.; Zode, G.H.; Mahapatra, D.K.; Thakre, S.; Dumore, N.; Gangane, P.S. Formulation, development, and evaluation of transdermal patches of piroxicam for treating dysmenorrhoea. J. Appl. Pharm. Sci., 2018, 8(11), 35-41.
[http://dx.doi.org/10.7324/JAPS.2018.81105]
[62]
Chandak, A.R.; Verma, P.R. Development and evaluation of HPMC based matrices for transdermal patches of tramadol. Clin. Res. Regul. Aff., 2008, 25(1), 13-30.
[http://dx.doi.org/10.1080/10601330701885066]
[63]
Patel, N.; Lalwani, D.; Gollmer, S.; Injeti, E.; Sari, Y.; Nesamony, J. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog. Biomater., 2016, 5(2), 117-133.
[http://dx.doi.org/10.1007/s40204-016-0051-9] [PMID: 27525203]
[64]
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]