Anti-cancer Potential of Pleurotus Mushroom: Detailed Insight on the Potential Bioactive Molecules, In vitro-In vivo Studies, and Formulation

Page: [439 - 456] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Early mushrooms were categorized under functional food/ nutritional food. However, later on, an increasing number of scientific studies strongly support their role in disease prevention and suppression or remission of a diseased state. Mycotherapy of cancer, a new promising field, deals with anticancerogenic agents derived from mushrooms. Rich in nutritive value, undemanding cultivation conditions, and an army of health-promoting bioactive molecules, collectively make Pleurotus mushroom ideal for a researcher to investigate its anti-cancer potential. The present review is a literature survey via. electronic search by two database search engines: Science Direct and PubMed, on the anti-cancer potential of Pleurotus species till 2021. This data profiling will -track information regarding the in vitro and in vivo anti-cancer activity of different Pleurotus species, along with identifying the bioactive molecules responsible for anti-cancer potential with their underlying mechanism of action. Resultant findings from the electronic search revealed that till 2021, nearly 13 species of Pleurotus mushroom had been studied for anti-cancer potential. The biomarkers responsible for activity are mostly higher molecular weight molecules, comprising polysaccharides, polypeptides, proteins, lectins, and enzymes. The lower molecular weight molecules like terpenoids, sterols, and phenolic compounds are less explored and untapped. The main underlying mechanism for the anticancer activity of Pleurotus mushrooms is the induction of the mitochondria intrinsic pathway. For anticancer, Pleurotus mushrooms are widely formulated as metal nanoparticles. Altogether, this detailed insight may give the researcher a path to be addressed, thus driving mass attention to identifying novel,effective, and safer anticancer potential biomarkers.

Keywords: Pleurotus mushroom, anti-cancer activity, electronic search, in vitro-in vivo studies, bioactive molecules, mechanism of action, formulation.

Graphical Abstract

[1]
Value, N.; Impact, E.; Philip, P.G. Miles; Chang, S.T; Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press, 2004.
[2]
Wasson, R.G. Soma, Divine Mushroom of Immortality; Harcourt, 1971.
[3]
Agarwal, S.; Kushwaha, A.; Verma, V.; Singh, M.P. Nutritional attributes of pleurotus mushroom. Incred. World Biotechnol, 2017, 13-24.
[4]
Zhang, M.; Zhao, C.; Shao, Q.; Yang, Z.; Zhang, X.; Xu, X.; Hassan, M. Determination of water content in corn stover silage using near-infrared spectroscopy. Int. J. Agric. Biol. Eng., 2019, 12(6), 143-148.
[http://dx.doi.org/10.25165/j.ijabe.20191206.4914]
[5]
Tolera, K.D.; Abera, S. Nutritional quality of oyster mushroom (Pleurotus ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci. Nutr., 2017, 5(5), 989-996.
[http://dx.doi.org/10.1002/fsn3.484] [PMID: 28948016]
[6]
Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Comparative effects of oyster mushrooms on lipid profile, liver and kidney function in hypercholesterolemic rats. Mycobiology, 2009, 37(1), 37-42.
[http://dx.doi.org/10.4489/MYCO.2009.37.1.037] [PMID: 23983505]
[7]
Bobek, P.; Ozdín, O.; Mikus, M. Dietary oyster mushroom (Pleurotus ostreatus) accelerates plasma cholesterol turnover in hypercholesterolaemic rat. Physiol. Res., 1995, 44(5), 287-291.
[PMID: 8869262]
[8]
Hossain, S.; Hashimoto, M.; Choudhury, E.K.; Alam, N.; Hussain, S.; Hasan, M.; Choudhury, S.K.; Mahmud, I. Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin. Exp. Pharmacol. Physiol., 2003, 30(7), 470-475.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03857.x] [PMID: 12823261]
[9]
Hu, S.H.; Liang, Z.C.; Chia, Y.C.; Lien, J.L.; Chen, K.S.; Lee, M.Y.; Wang, J.C. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. J. Agric. Food Chem., 2006, 54(6), 2103-2110.
[http://dx.doi.org/10.1021/jf052890d] [PMID: 16536582]
[10]
Mori, K.; Kobayashi, C.; Tomita, T.; Inatomi, S.; Ikeda, M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr. Res., 2008, 28(5), 335-342.
[http://dx.doi.org/10.1016/j.nutres.2008.03.010] [PMID: 19083429]
[11]
Kajaba, I.; Simoncic, R.; Frecerova, K.; Belay, G. Clinical studies on the hypolipidemic and antioxidant effects of selected natural substances. Bratisl. Lek Listy, 2008, 109(6), 267-272.
[PMID: 18700439]
[12]
Mizutani, T.; Inatomi, S.; Inazu, A.; Kawahara, E. Hypolipidemic effect of Pleurotus eryngii extract in fat-loaded mice. J. Nutr. Sci. Vitaminol., 2010, 56(1), 48-53.
[http://dx.doi.org/10.3177/jnsv.56.48] [PMID: 20354346]
[13]
Gunde-Cimerman, N.; Plemenitaš, A.; Cimerman, A. Pleurotus fungi produce mevinolin, an inhibitor of HMG CoA reductase. FEMS Microbiol. Lett., 1993, 113(3), 333-337.
[http://dx.doi.org/10.1111/j.1574-6968.1993.tb06536.x] [PMID: 8270199]
[14]
Martin, K.R. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment. Nutr. J., 2010, 9(1), 29.
[http://dx.doi.org/10.1186/1475-2891-9-29] [PMID: 20637088]
[15]
Miyazawa, N.; Okazaki, M.; Ohga, S. Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J. Oleo Sci., 2008, 57(12), 675-681.
[http://dx.doi.org/10.5650/jos.57.675] [PMID: 19001780]
[16]
Hagiwara, S-Y.; Takahashi, M.; Shen, Y.; Kaihou, S.; Tomiyama, T.; Yazawa, M.; Tamai, Y.; Sin, Y.; Kazusaka, A.; Terazawa, M. A phytochemical in the edible Tamogi-take mushroom (Pleurotus cornucopiae), D-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Biosci. Biotechnol. Biochem., 2005, 69(8), 1603-1605.
[http://dx.doi.org/10.1271/bbb.69.1603] [PMID: 16116292]
[17]
Hu, S-H.; Wang, J-C.; Lien, J-L.; Liaw, E-T.; Lee, M-Y. Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl. Microbiol. Biotechnol., 2006, 70(1), 107-113.
[http://dx.doi.org/10.1007/s00253-005-0043-5] [PMID: 16001252]
[18]
Krishna, S.; Usha, P. Hypoglycaemic effect of a combination of Pleurotus ostreatus, murraya koenigii and aegle marmelos in diabetic rats. Indian J. Anim. Sci., 2009, 79, 986-987.
[19]
Chorváthová, V.; Bobek, P.; Ginter, E.; Klvanová, J. Effect of the oyster fungus on glycaemia and cholesterolaemia in rats with insulin-dependent diabetes. Physiol. Res., 1993, 42(3), 175-179.
[PMID: 8218150]
[20]
Badole, S.L.; Patel, N.M.; Thakurdesai, P.A.; Bodhankar, S.L. Interaction of aqueous extract of pleurotus pulmonarius (Fr.) Quel-Champ. with Glyburide in Alloxan Induced Diabetic Mice. Evid. Based Complement. Alternat. Med., 2008, 5(2), 159-164.
[http://dx.doi.org/10.1093/ecam/nem010] [PMID: 18604261]
[21]
Kim, J-I.; Kang, M-J. Im, J.; Seo, Y-J.; Lee, Y-M.; Song, J-H.; Lee, J-H.; Kim, M-E. Effect of king oyster mushroom (Pleurotus Eryngii) on insulin resistance and dyslipidemia in Db/Db mice. Food Sci. Biotechnol., 2010, 19(1), 239-242.
[http://dx.doi.org/10.1007/s10068-010-0033-y]
[22]
Jayakumar, T.; Ramesh, E.; Geraldine, P. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem. Toxicol., 2006, 44(12), 1989-1996.
[http://dx.doi.org/10.1016/j.fct.2006.06.025] [PMID: 16914248]
[23]
Sumy, A.K.; Jahan, N.; Sultana, N. Study on the hepatoprotective effect of oyster mushroom (Pleurotus Florida) against paracetamol induced liver damage in wistar albino rats. J. Bangladesh Soc. Physiol., 1970, 5(2), 46-52.
[http://dx.doi.org/10.3329/jbsp.v5i2.6776]
[24]
Li, L.; Ng, T.B.; Song, M.; Yuan, F.; Liu, Z.K.; Wang, C.L.; Jiang, Y.; Fu, M.; Liu, F. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice. Appl. Microbiol. Biotechnol., 2007, 75(4), 863-869.
[http://dx.doi.org/10.1007/s00253-007-0865-4] [PMID: 17347821]
[25]
Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Seo, S.H.; Kang, E.Y.; Kim, S.L.; Park, Y.J.; Ro, H.M.; Chung, I.M. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem., 2008, 56(16), 7265-7270.
[http://dx.doi.org/10.1021/jf8008553] [PMID: 18616260]
[26]
Liu, X.; Zhou, B.; Lin, R.; Jia, L.; Deng, P.; Fan, K.; Wang, G.; Wang, L.; Zhang, J. Extraction and antioxidant activities of intracellular polysaccharide from Pleurotus sp. mycelium. Int. J. Biol. Macromol., 2010, 47(2), 116-119.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.012] [PMID: 20580645]
[27]
Karaman, M.; Jovin, E.; Malbasa, R.; Matavuly, M. Popović M. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother. Res., 2010, 24(10), 1473-1481.
[http://dx.doi.org/10.1002/ptr.2969] [PMID: 20878697]
[28]
Khan, M.A.; Rahman, M.M.; Tania, M.; Uddin, N.; Ahmed, S. Pleurotus sajor-caju and pleurotus florida mushrooms improve some extent of the antioxidant systems in the liver of hypercholesterolemic Rats. Open Nutraceuticals J., 2011, 4(1), 20-24.
[http://dx.doi.org/10.2174/1876396001104010020]
[29]
Jayakumar, T.; Thomas, P.A.; Isai, M.; Geraldine, P. An extract of the oyster mushroom, Pleurotus ostreatus, increases catalase gene expression and reduces protein oxidation during aging in rats. J. Chin. Integr. Med., 2010, 8(8), 774-780.
[http://dx.doi.org/10.3736/jcim20100808] [PMID: 20727333]
[30]
Maity, K.; Kar Mandal, E.; Maity, S.; Gantait, S.K.; Das, D.; Maiti, S.; Maiti, T.K.; Sikdar, S.R.; Islam, S.S. Structural characterization and study of immunoenhancing and antioxidant property of a novel polysaccharide isolated from the aqueous extract of a somatic hybrid mushroom of Pleurotus florida and Calocybe indica variety APK2. Int. J. Biol. Macromol., 2011, 48(2), 304-310.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.12.003] [PMID: 21145916]
[31]
Rosa, L.H.; Machado, K.M.G.; Rabello, A.L.T.; Souza-Fagundes, E.M.; Correa-Oliveira, R.; Rosa, C.A.; Zani, C.L. Cytotoxic, immunosuppressive, trypanocidal and antileishmanial activities of Basidiomycota fungi present in Atlantic Rainforest in Brazil. Antonie van Leeuwenhoek, 2009, 95(3), 227-237.
[http://dx.doi.org/10.1007/s10482-009-9306-y] [PMID: 19194781]
[32]
Zhang, M.; Cheung, P.C.K.; Ooi, V.E.C.; Zhang, L. Evaluation of sulfated fungal beta-glucans from the sclerotium of Pleurotus tuber-regium as a potential water-soluble anti-viral agent. Carbohydr. Res., 2004, 339(13), 2297-2301.
[http://dx.doi.org/10.1016/j.carres.2004.07.003] [PMID: 15337458]
[33]
El-Fakharany, E.M.; Haroun, B.M.; Ng, T.B.; Redwan, E.R. Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept. Lett., 2010, 17(8), 1031-1039.
[http://dx.doi.org/10.2174/092986610791498948] [PMID: 20156183]
[34]
Wang, H.; Ng, T.B. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides, 2004, 25(1), 1-5.
[http://dx.doi.org/10.1016/j.peptides.2003.11.014] [PMID: 15003349]
[35]
Rovenský, J. Stančíkova, M.; Svík, K.; Bauerová, K.; Jurčovičová, J. The effects of β-glucan isolated from Pleurotus ostreatus on methotrexate treatment in rats with adjuvant arthritis. Rheumatol. Int., 2011, 31(4), 507-511.
[http://dx.doi.org/10.1007/s00296-009-1258-z] [PMID: 20033413]
[36]
Isai, M.; Elanchezhian, R.; Sakthivel, M.; Chinnakkaruppan, A.; Rajamohan, M.; Jesudasan, C.N.; Thomas, P.A.; Geraldine, P. Anticataractogenic effect of an extract of the oyster mushroom, Pleurotus ostreatus, in an experimental animal model. Curr. Eye Res., 2009, 34(4), 264-273.
[http://dx.doi.org/10.1080/02713680902774069] [PMID: 19373574]
[37]
Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; Dandona, L.; Dicker, D.J.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Foreman, K.; Forouzanfar, M.H.; Fraser, M.S.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Huynh, C.; Johnson, C.O.; Kassebaum, N.J.; Kinfu, Y.; Kulikoff, X.R.; Kutz, M.; Kyu, H.H.; Larson, H.J.; Leung, J.; Liang, X.; Lim, S.S.; Lind, M.; Lozano, R.; Marquez, N.; Mensah, G.A.; Mikesell, J.; Mokdad, A.H.; Mooney, M.D.; Nguyen, G.; Nsoesie, E.; Pigott, D.M.; Pinho, C.; Roth, G.A.; Salomon, J.A.; Sandar, L.; Silpakit, N.; Sligar, A.; Sorensen, R.J.D.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; VanderZanden, A.; Vollset, S.E.; Wanga, V.; Whiteford, H.A.; Wolock, T.; Zoeckler, L.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Abreu, D.M.X.; Abu-Raddad, L.J.; Abyu, G.Y.; Achoki, T.; Adelekan, A.L.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Afanvi, K.A.; Afshin, A.; Agardh, E.E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A.A.; Ajala, O.N.; Akanda, A.S.; Akinyemi, R.O.; Akinyemiju, T.F.; Akseer, N.; Lami, F.H.A.; Alabed, S.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Alasfoor, D.; Aldhahri, S.F.; Aldridge, R.W.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Martin, E.A.; Alvis-Guzman, N.; Amare, A.T.; Amegah, A.K.; Ameh, E.A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, B.O.; Anderson, G.M.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Arsenijevic, V.S.A.; Artaman, A.; Asayesh, H.; Asghar, R.J.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M.C.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Basu, S.; Bayou, Y.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Belay, H.A.; Bell, B.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhalla, A.; Biadgilign, S.; Bikbov, B.; Abdulhak, A.A.B.; Biroscak, B.J.; Biryukov, S.; Bjertness, E.; Blore, J.D.; Blosser, C.D.; Bohensky, M.A.; Borschmann, R.; Bose, D.; Bourne, R.R.A.; Brainin, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Brewer, J.D.; Brown, A.; Brown, J.; Brugha, T.S.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carapetis, J.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Cavalleri, F.; Cercy, K.; Cerda, J.; Chen, W.; Chew, A.; Chiang, P.P-C.; Chibalabala, M.; Chibueze, C.E.; Chimed-Ochir, O.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Cooper, C.; Cooper, L.T.; Cortinovis, M.; Cowie, B.C.; Crump, J.A.; Damsere-Derry, J.; Danawi, H.; Dandona, R.; Daoud, F.; Darby, S.C.; Dargan, P.I. das Neves, J.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; de Castro, E.F.; de Jager, P.; Leo, D.D.; Degenhardt, L.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; dos Santos, K.P.B.; Dossou, E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ellenbogen, R.G.; Ellingsen, C.L.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Faghmous, I.D.A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Flaxman, A.; Foigt, N.; Fowkes, F.G.R.; Franca, E.B.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gall, S.L.; Gambashidze, K.; Gamkrelidze, A.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Gebru, A.A.; Geleijnse, J.M.; Gessner, B.D.; Ghoshal, A.G.; Gibney, K.B.; Gillum, R.F.; Gilmour, S.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Greaves, F.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Heckbert, S.R.; Heredia-Pi, I.B.; Heydarpour, P.; Hilderink, H.B.M.; Hoek, H.W.; Hogg, R.S.; Horino, M.; Horita, N.; Hosgood, H.D.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Htike, M.M.T.; Hu, G.; Huang, C.; Huang, H.; Huiart, L.; Husseini, A.; Huybrechts, I.; Huynh, G.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; James, P.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jonas, J.B.; Joshi, T.K.; Kabir, Z.; Kamal, R.; Kan, H.; Kant, S.; Karch, A.; Karema, C.K.; Karimkhani, C.; Karletsos, D.; Karthikeyan, G.; Kasaeian, A.; Katibeh, M.; Kaul, A.; Kawakami, N.; Kayibanda, J.F.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kereselidze, M.; Kesavachandran, C.N.; Khader, Y.S.; Khalil, I.A.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Kieling, C.; Kim, D.; Kim, Y.J.; Kissela, B.M.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Krog, N.H.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lal, A.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Lansingh, V.C.; Larsson, A.; Laryea, D.O.; Latif, A.A.; Lawrynowicz, A.E.B.; Leigh, J.; Levi, M.; Li, Y.; Lindsay, M.P.; Lipshultz, S.E.; Liu, P.Y.; Liu, S.; Liu, Y.; Lo, L-T.; Logroscino, G.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Machado, V.M.P.; Mackay, M.T.; MacLachlan, J.H.; Razek, H.M.A.E.; Magdy, M.; Razek, A.E.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Manamo, W.A.A.; Mandisarisa, J.; Mangalam, S.; Mapoma, C.C.; Marcenes, W.; Margolis, D.J.; Martin, G.R.; Martinez-Raga, J.; Marzan, M.B.; Masiye, F.; Mason-Jones, A.J.; Massano, J.; Matzopoulos, R.; Mayosi, B.M.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Micha, R.; Millear, A.; Miller, T.R.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammad, K.A.; Mohammadi, A.; Mohammed, S.; Mohan, V.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montero, P.; Montico, M.; Montine, T.J.; Moradi-Lakeh, M.; Morawska, L.; Morgan, K.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Murthy, G.V.S.; Murthy, S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naidoo, K.S.; Naik, N.; Naldi, L.; Nangia, V.; Nash, D.; Nejjari, C.; Neupane, S.; Newton, C.R.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; de Dieu Ngirabega, J.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nomura, M.; Norheim, O.F.; Norman, P.E.; Norrving, B.; Nyakarahuka, L.; Ogbo, F.A.; Ohkubo, T.; Ojelabi, F.A.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Ortiz, A.; Osman, M.; Ota, E.; Ozdemir, R.; Pa, M.; Pain, A.; Pandian, J.D.; Pant, P.R.; Papachristou, C.; Park, E-K.; Park, J-H.; Parry, C.D.; Parsaeian, M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Paul, V.K.; Pearce, N.; Pedro, J.M.; Stokic, L.P.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Qorbani, M.; Quame-Amaglo, J.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajavi, Z.; Rajsic, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Ranabhat, C.L.; Rangaswamy, T.; Rao, P.; Rao, S.R.; Refaat, A.H.; Rehm, J.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Ricci, S.; Blancas, M.J.R.; Roberts, B.; Roca, A.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Roy, N.K.; Ruhago, G.M.; Sagar, R.; Saha, S.; Sahathevan, R.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Niño, M.D.; Sanchez-Riera, L.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Shakh-Nazarova, M.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Shen, Z.; Shepard, D.S.; Sheth, K.N.; Shetty, B.P.; Shi, P.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Singh, A.; Singh, G.M.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Singh, V.; Soneji, S.; Søreide, K.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Stein, D.J.; Stein, M.B.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabb, K.M.; Takahashi, K.; Takala, J.S.; Talongwa, R.T.; Tandon, N.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Tefera, W.M.; Have, M.T.; Terkawi, A.S.; Tesfay, F.H.; Tessema, G.A.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tirschwell, D.L.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Traebert, J.; Tran, B.X.; Truelsen, T.; Trujillo, U.; Tura, A.K.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Undurraga, E.A.; Uthman, O.A.; Dingenen, R.V.; van Donkelaar, A.; Vasankari, T.; Vasconcelos, A.M.N.; Venketasubramanian, N.; Vidavalur, R.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Wagner, J.A.; Wagner, G.R.; Wallin, M.T.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Wijeratne, T.; Wilkinson, J.D.; Williams, H.C.; Wiysonge, C.S.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Won, S.; Wong, J.Q.; Woolf, A.D.; Xavier, D.; Xiao, Q.; Xu, G.; Yakob, B.; Yalew, A.Z.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yirsaw, B.D.; Yonemoto, N.; Yonga, G.; Younis, M.Z.; Yu, S.; Zaidi, Z.; Zaki, M.E.S.; Zannad, F.; Zavala, D.E.; Zeeb, H.; Zeleke, B.M.; Zhang, H.; Zodpey, S.; Zonies, D.; Zuhlke, L.J.; Vos, T.; Lopez, A.D.; Murray, C.J.L. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[38]
Upadhyay, H.C. Coumarin-1,2,3-triazole Hybrid Molecules: An Emerging Scaffold for Combating Drug Resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[39]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[40]
Upadhyay, H.C.; Mishra, A.; Pandey, J.; Sharma, P.; Tamrakar, A.K.; Srivastava, A.K.; Khan, F.; Srivastava, S.K. In vitro, in vivo and in silico antihyperglycemic activity of some semi-synthetic phytol derivatives. Med. Chem., 2020.
[http://dx.doi.org/10.2174/1573406417666201216124018] [PMID: 33327922]
[41]
Dwivedi, D.G.; Singh, A.; Upadhyay, H.C.; Pati, S.; Singh, D.P.; Prasad, K.; Darokar, M.; Srivastava, S. Determination of drug resistance mechanism (s) of clinical isolates of P. aeruginosa and phytoextract as drug resistance reversal agent. EC Microbiol., 2017, 13, 35-41.
[42]
Byerrum, R.U.; Clarke, D.A.; Lucas, E.H.; Ringler, R.L.; Stevens, J.A.; Stock, C.C. Tumor inhibitors in Boletus edulis and other Holobasidiomycetes. Antibiot. Chemother. (Northfield Ill.), 1957, 7(1), 1-4.
[PMID: 24544235]
[43]
Bhat, R.; Sharanabasava, V.G.; Deshpande, R.; Shetti, U.; Sanjeev, G.; Venkataraman, A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J. Photochem. Photobiol. B, 2013, 125, 63-69.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.05.002] [PMID: 23747539]
[44]
Menaga, D.; Rahman, P.K.S.M.; Rajakumar, S.; Ayyasamy, P.M. Antioxidant and cytotoxic activities of a novel isomeric molecule (PF5) obtained from methanolic extract of Pleurotus florida mushroom. J. Bioresour. Bioprod, 2021, 6(4), 338-349.
[45]
Chaturvedi, V.K.; Rai, S.N.; Tabassum, N.; Yadav, N.; Singh, V.; Bohara, R.A.; Singh, M.P. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications. Biochem. Biophys. Rep., 2020, 24(8), 100812.
[http://dx.doi.org/10.1016/j.bbrep.2020.100812] [PMID: 33083576]
[46]
Radzki, W. Ziaja-Sołtys, M.; Nowak, J.; Rzymowska, J.; Topolska, J.; Sławińska, A.; Michalak-Majewska, M.; Zalewska-Korona, M.; Kuczumow, A. Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. Lebensm. Wiss. Technol., 2016, 66, 27-33.
[http://dx.doi.org/10.1016/j.lwt.2015.10.016]
[47]
Sarangi, I.; Ghosh, D.; Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int. Immunopharmacol., 2006, 6(8), 1287-1297.
[http://dx.doi.org/10.1016/j.intimp.2006.04.002] [PMID: 16782541]
[48]
Kong, F.; Li, F.E.; He, Z.; Jiang, Y.; Hao, R.; Sun, X.; Tong, H. Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus. Int. J. Biol. Macromol., 2014, 69, 561-566.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.045] [PMID: 24942990]
[49]
Nimri, L.; Spivak, O.; Tal, D.; Schälling, D.; Peri, I.; Graeve, L.; Salame, T.M.; Yarden, O.; Hadar, Y.; Schwartz, B. A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells. Oncotarget, 2017, 8(17), 28854-28864.
[http://dx.doi.org/10.18632/oncotarget.15859] [PMID: 28416764]
[50]
Ebrahimi, A.; Atashi, A.; Soleimani, M.; Mashhadikhan, M.; Barahimi, A.; Kaviani, S. Comparison of anticancer effect of Pleurotus ostreatus extract with doxorubicin hydrochloride alone and plus thermotherapy on erythroleukemia cell line. J. Complement. Integr. Med., 2017, 15(2), 1-8.
[http://dx.doi.org/10.1515/jcim-2016-0136] [PMID: 29257758]
[51]
Ebrahimi, A.; Atashi, A.; Soleimani, M.; Mashhadikhan, M.; Barahimi, A.; Maghari, A. Anti-invasive and antiproliferative effects of Pleurotus ostreatus extract on acute leukemia cell lines. J. Basic Clin. Physiol. Pharmacol., 2018, 29(1), 95-102.
[http://dx.doi.org/10.1515/jbcpp-2017-0088] [PMID: 29127762]
[52]
Krishnamoorthy, D.; Sankaran, M. Modulatory effect of Pleurotus ostreatus on oxidant/antioxidant status in 7, 12-dimethylbenz (a) anthracene induced mammary carcinoma in experimental rats-A dose-response study. J. Cancer Res. Ther., 2016, 12(1), 386-394.
[http://dx.doi.org/10.4103/0973-1482.148691] [PMID: 27072268]
[53]
Yehia, R.S.; Al-Sheikh, H. Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J. Microbiol. Biotechnol., 2014, 30(11), 2797-2803.
[http://dx.doi.org/10.1007/s11274-014-1703-3] [PMID: 25053172]
[54]
Swatilekha, M.; Mallick, S.K.; Bhutia, S.K.; Behera, B.; Arora, S. Antitumor effect of culinary-medicinal oyster mushroom, Pleurotus ostreatus (Jacq.: Fr.) P. Kumm., Derived protein fraction on tumor-bearing mice models. Int. J. Med. Mushrooms, 2011, 13(5), 427-440.
[55]
Arora, S.; Tandon, S. Mushroom extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and Go/G1-phase cell cycle arrest. Arch. Med., 2015, 18(5), 284-295.
[PMID: 25959910]
[56]
Zhang, Y.; Zhang, Z.; Liu, H.; Wang, D.; Wang, J.; Deng, Z.; Li, T.; He, Y.; Yang, Y.; Zhong, S. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int. J. Biol. Macromol., 2020, 165(Pt B), 2934-2946.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.168] [PMID: 33115648]
[57]
Lavi, I.; Friesem, D.; Geresh, S.; Hadar, Y.; Schwartz, B. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer Lett., 2006, 244(1), 61-70.
[http://dx.doi.org/10.1016/j.canlet.2005.12.007] [PMID: 16413114]
[58]
Gu, Y-H.; Sivam, G. Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells. J. Med. Food, 2006, 9(2), 196-204.
[http://dx.doi.org/10.1089/jmf.2006.9.196] [PMID: 16822205]
[59]
Martin, K.R.; Brophy, S.K. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp. Biol. Med. (Maywood), 2010, 235(11), 1306-1314.
[http://dx.doi.org/10.1258/ebm.2010.010113] [PMID: 20921274]
[60]
Wiater, A.; Paduch, R. Pleszczyńska, M.; Próchniak, K.; Choma, A.; Kandefer-Szerszeń M.; Szczodrak, J. α-(1 → 3)-D-glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnol. Lett., 2011, 33(4), 787-795.
[http://dx.doi.org/10.1007/s10529-010-0502-7] [PMID: 21188616]
[61]
Wisbeck, E.; Facchini, J.M.; Alves, E.P.; Silveira, M.L.L.; Gern, R.M.M.; Ninow, J.L.; Furlan, S.A. A polysaccharide fraction extracted from Pleurotus ostreatus mycelial biomass inhibit Sarcoma 180 tumor. An. Acad. Bras. Cienc., 2017, 89(3)(Suppl.), 2013-2020.
[http://dx.doi.org/10.1590/0001-3765201720150635] [PMID: 29166531]
[62]
Jedinak, A.; Sliva, D. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int. J. Oncol., 2008, 33(6), 1307-1313.
[PMID: 19020765]
[63]
Cao, X.Y.; Liu, J.L.; Yang, W.; Hou, X.; Li, Q.J. Antitumor activity of polysaccharide extracted from Pleurotus ostreatus mycelia against gastric cancer in vitro and in vivo. Mol. Med. Rep., 2015, 12(2), 2383-2389.
[http://dx.doi.org/10.3892/mmr.2015.3648] [PMID: 25892617]
[64]
Biscaia, S.M.P.; Carbonero, E.R.; Bellan, D.L.; Borges, B.S.; Costa, C.R.; Rossi, G.R.; Gonçalves, J.P.; Melo, C.M.; Lívero, F.A.R.; Ruthes, A.C.; Zotz, R.; Silva, E.V.; Oliveira, C.C.; Acco, A.; Nader, H.B.; Chammas, R.; Iacomini, M.; Franco, C.R.C.; Trindade, E.S. Safe therapeutics of murine melanoma model using a novel antineoplasic, the partially methylated mannogalactan from Pleurotus eryngii. Carbohydr. Polym., 2017, 178(August), 95-104.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.117] [PMID: 29050620]
[65]
Ren, D.; Wang, N.; Guo, J.; Yuan, L.; Yang, X. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells. Carbohydr. Polym., 2016, 138, 123-133.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.051] [PMID: 26794745]
[66]
Sun, Y.; Hu, X.; Li, W. Antioxidant, antitumor and immunostimulatory activities of the polypeptide from Pleurotus eryngii mycelium. Int. J. Biol. Macromol., 2017, 97, 323-330.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.043] [PMID: 28093329]
[67]
Mariga, A.M.; Pei, F.; Yang, W.J.; Zhao, L.Y.; Shao, Y.N.; Mugambi, D.K.; Hu, Q.H. Immunopotentiation of Pleurotus eryngii (DC. ex Fr.). Quel. J. Ethnopharmacol., 2014, 153(3), 604-614.
[http://dx.doi.org/10.1016/j.jep.2014.03.006] [PMID: 24650999]
[68]
Hu, Q.; Yuan, B.; Xiao, H.; Zhao, L.; Wu, X.; Rakariyatham, K.; Zhong, L.; Han, Y.; Muinde Kimatu, B.; Yang, W. Polyphenols-rich extract from Pleurotus eryngii with growth inhibitory of HCT116 colon cancer cells and anti-inflammatory function in RAW264.7 cells. Food Funct., 2018, 9(3), 1601-1611.
[http://dx.doi.org/10.1039/C7FO01794D] [PMID: 29465116]
[69]
Yuan, B.; Ma, N.; Zhao, L.; Zhao, E.; Gao, Z.; Wang, W.; Song, M.; Zhang, G.; Hu, Q.; Xiao, H. In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food Funct., 2017, 8(10), 3553-3562.
[http://dx.doi.org/10.1039/C7FO00895C] [PMID: 28880032]
[70]
Ma, G.; Yang, W.; Mariga, A.M.; Fang, Y.; Ma, N.; Pei, F.; Hu, Q. Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydr. Polym., 2014, 114, 297-305.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.069] [PMID: 25263894]
[71]
Yang, Z.; Xu, J.; Fu, Q.; Fu, X.; Shu, T.; Bi, Y.; Song, B. Antitumor activity of a polysaccharide from Pleurotus eryngii on mice bearing renal cancer. Carbohydr. Polym., 2013, 95(2), 615-620.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.024] [PMID: 23648020]
[72]
Raman, J.; Reddy, G.R.; Lakshmanan, H.; Selvaraj, V.; Gajendran, B.; Nanjian, R.; Chinnasamy, A.; Sabaratnam, V. Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Process Biochem., 2015, 50(1), 140-147.
[http://dx.doi.org/10.1016/j.procbio.2014.11.003]
[73]
Wu, X.; Zheng, S.; Cui, L.; Wang, H.; Ng, T.B. Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J. Gen. Appl. Microbiol., 2010, 56(3), 231-239.
[http://dx.doi.org/10.2323/jgam.56.231] [PMID: 20647680]
[74]
Jagadeesh, R.; Babu, G.; Lakshmanan, H.; Oh, O.M.; Jang, J.K.; Kong, K.W.; Raaman, N. Bioactive sterol derivatives isolated from the Pleurotus djamor var. roseus induced apoptosis in cancer cell lines. Cardiovasc. Hematol. Agents Med. Chem., 2020, 18(2), 124-134.
[http://dx.doi.org/10.2174/1871525718666200303123557] [PMID: 32660409]
[75]
Finimundy, T.C.; Abreu, R.M.V.; Bonetto, N.; Scariot, F.J.; Dillon, A.J.P.; Echeverrigaray, S.; Barros, L.; Ferreira, I.C.F.R.; Henriques, J.A.P.; Roesch-Ely, M. Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food Chem. Toxicol., 2018, 112(112), 383-392.
[http://dx.doi.org/10.1016/j.fct.2018.01.015] [PMID: 29337231]
[76]
Finimundy, T.C.; Gambato, G.; Fontana, R.; Camassola, M.; Salvador, M.; Moura, S.; Hess, J.; Henriques, J.A.P.; Dillon, A.J.P.; Roesch-Ely, M. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr. Res., 2013, 33(1), 76-84.
[http://dx.doi.org/10.1016/j.nutres.2012.11.005] [PMID: 23351413]
[77]
Ngai, P.H.K.; Ng, T.B. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides, 2004, 25(1), 11-17.
[http://dx.doi.org/10.1016/j.peptides.2003.11.012] [PMID: 15003351]
[78]
Dalonso, N.; Souza, R.; Silveira, M.L.L.; Ruzza, A.A.; Wagner, T.M.; Wisbeck, E.; Furlan, S.A. Characterization and antineoplasic effect of extracts obtained from Pleurotus sajor-caju fruiting bodies. Appl. Biochem. Biotechnol., 2010, 160(8), 2265-2274.
[http://dx.doi.org/10.1007/s12010-009-8678-9] [PMID: 19507058]
[79]
Ren, D.; Jiao, Y.; Yang, X.; Yuan, L.; Guo, J.; Zhao, Y. Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chem. Biol. Interact., 2015, 237, 166-174.
[http://dx.doi.org/10.1016/j.cbi.2015.06.017] [PMID: 26091901]
[80]
Shi, X.; Zhao, Y.; Jiao, Y.; Shi, T.; Yang, X. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS One, 2013, 8(5), e64266.
[http://dx.doi.org/10.1371/journal.pone.0064266] [PMID: 23691187]
[81]
Cui, H.; Wu, S.; Shang, Y.; Li, Z.; Chen, M.; Li, F.; Wang, C. Pleurotus nebrodensis polysaccharide(PN50G) evokes A549 cell apoptosis by the ROS/AMPK/PI3K/AKT/mTOR pathway to suppress tumor growth. Food Funct., 2016, 7(3), 1616-1627.
[http://dx.doi.org/10.1039/C6FO00027D] [PMID: 26918909]
[82]
Lv, H.; Kong, Y.; Yao, Q.; Zhang, B.; Leng, F-W.; Bian, H-J.; Balzarini, J.; Van Damme, E.; Bao, J-K. Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine, 2009, 16(2-3), 198-205.
[http://dx.doi.org/10.1016/j.phymed.2008.07.004] [PMID: 18722099]
[83]
Cha, Y.J.; Alam, N.; Lee, J.S.; Lee, K.R.; Shim, M.J.; Lee, M.W.; Kim, H.Y.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Lee, T.S. Anticancer and immunopotentiating activities of crude polysaccharides from pleurotus nebrodensis on mouse sarcoma 180. Mycobiology, 2012, 40(4), 236-243.
[http://dx.doi.org/10.5941/MYCO.2012.40.4.236] [PMID: 23323048]
[84]
Li, Y.R.; Liu, Q.H.; Wang, H.X.; Ng, T.B. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim. Biophys. Acta, 2008, 1780(1), 51-57.
[http://dx.doi.org/10.1016/j.bbagen.2007.09.004] [PMID: 17961926]
[85]
Chen, J-N.; Wang, Y-T.; Wu, J.S-B. A glycoprotein extracted from golden oyster mushroom Pleurotus citrinopileatus exhibiting growth inhibitory effect against U937 leukemia cells. J. Agric. Food Chem., 2009, 57(15), 6706-6711.
[http://dx.doi.org/10.1021/jf901284s] [PMID: 19606865]
[86]
Wang, Q.; Niu, L-L.; Liu, H-P.; Wu, Y-R.; Li, M-Y.; Jia, Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int. J. Biol. Macromol., 2021, 168, 251-260.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.053] [PMID: 33309662]
[87]
Zhang, M.; Cheung, P.C.K.; Zhang, L.; Chiu, L. Carboxymethylated B-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. Carbohydr. Polym., 2004, 57(3), 319-325.
[http://dx.doi.org/10.1016/j.carbpol.2004.05.008]
[88]
Li, X.; Zhou, J.; Dong, X.; Cheng, W.Y.; Duan, H.; Cheung, P.C.K. In vitro and in vivo photothermal cancer therapeutic effects of gold nanorods modified with mushroom β-glucan. J. Agric. Food Chem., 2018, 66(16), 4091-4098.
[http://dx.doi.org/10.1021/acs.jafc.8b00292] [PMID: 29627979]
[89]
Wong, J.H.; Ng, T.B.; Jiang, Y.; Liu, F.; Sze, S.C.; Zhang, K.Y. Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae). Protein Pept. Lett., 2010, 17(8), 1040-1047.
[http://dx.doi.org/10.2174/092986610791498966] [PMID: 19807674]
[90]
Wang, S.; Bao, L.; Zhao, F.; Wang, Q.; Li, S.; Ren, J.; Li, L.; Wen, H.; Guo, L.; Liu, H. Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom pleurotus cornucopiae. J. Agric. Food Chem., 2013, 61(21), 5122-5129.
[http://dx.doi.org/10.1021/jf401612t] [PMID: 23650961]
[91]
Morris, H.J.; Hernández, E.; Llauradó, G.; Tejedor, M.C.; Sancho, P.; Herraez, Á.; Boyano-Adánez, M. del C.; García-Pérez, A.I.; Diez, J.C. In vitro anti-proliferative effects on NB4 human leukemia cells and physicochemical screening of Pleurotus sp. (higher Basidiomycetes) mycelia from Cuba. Int. J. Med. Mushrooms, 2014, 16(3), 239-245.
[http://dx.doi.org/10.1615/IntJMedMushr.v16.i3.40] [PMID: 24941165]
[92]
Elbatrawy, E.N.; Ghonimy, E.A.; Alassar, M.M.; Wu, F-S. Medicinal mushroom extracts possess differential antioxidant activity and cytotoxicity to cancer cells. Int. J. Med. Mushrooms, 2015, 17(5), 471-479.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i5.70] [PMID: 26082986]
[93]
Xu, W.; Huang, J.J.; Cheung, P.C. Extract of Pleurotus pulmonarius suppresses liver cancer development and progression through inhibition of VEGF-induced PI3K/AKT signaling pathway. PLoS One, 2012, 7(3), e34406.
[http://dx.doi.org/10.1371/journal.pone.0034406] [PMID: 22470568]
[94]
Wang, W.; Chen, K.; Liu, Q.; Johnston, N.; Ma, Z.; Zhang, F.; Zheng, X. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration. PLoS One, 2014, 9(7), e102673.
[http://dx.doi.org/10.1371/journal.pone.0102673] [PMID: 25029345]
[95]
Zhang, M.; Zhu, L.; Cui, S.W.; Wang, Q.; Zhou, T.; Shen, H. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus. Int. J. Biol. Macromol., 2011, 48(1), 5-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.09.003] [PMID: 20850471]
[96]
Patel, S.; Goyal, A. Recent developments in mushrooms as anticancer therapeutics: A review. 3 Biotech, 2012, 2(1), 1-15.
[http://dx.doi.org/10.1007/s13205-011-0036-2]
[97]
Golak-siwulska, I.; Kałużewicz, A.; Spiżewski, T. Bioactive compounds and medicinal properties of oyster mushrooms. ( Pleurotus Sp .), 2018, 30(2), 191-201.
[http://dx.doi.org/10.2478/fhort-2018-0012]
[98]
Friedman, M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods, 2016, 5(4), 80.
[http://dx.doi.org/10.3390/foods5040080] [PMID: 28231175]
[99]
Trung, H.; Van; Tuan, N.N.; Thanh, N.T.; Thi, T. Determination of ergosterol and ergosterol peroxide in higher fungi species by high- performance liquid chromatography. 2018, 7(3), 2376-2379.
[100]
Schneider, Inga; Kressel, Gaby; Meyer, Annette; Krings, Ulrich; Berger, Ralf Hahn, G.; Andreas, I.A.-S. Lipid lowering effects of oyster mushroom (Pleurotus Ostreatus) in humans. J. Funct. Foods, 2011, 3(1)
[http://dx.doi.org/10.1016/j.jff.2010.11.004]
[101]
Palacios, I.; Lozano, M.; Moro, C.; Arrigo, M.D.; Rostagno, M.A.; Martínez, J.A.; García-lafuente, A.; Guillamón, E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem., 2011, 128(3), 674-678.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.085]
[102]
Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with Selenium and Zinc. Eur. Food Res. Technol., 2016, 242(5), 723-732.
[http://dx.doi.org/10.1007/s00217-015-2580-1]
[103]
Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol., 2012, 50(5), 1201-1207.
[http://dx.doi.org/10.1016/j.fct.2012.02.013] [PMID: 22369965]
[104]
Dasgupta, A.; Acharya, K. Mushrooms: An emerging resource for therapeutic terpenoids. 3 Biotech, 2019, 9(10), 369.
[http://dx.doi.org/10.1007/s13205-019-1906-2]
[105]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[106]
Bhardwaj, K.; Sharma, A.; Tejwan, N.; Bhardwaj, S.; Bhardwaj, P.; Nepovimova, E.; Shami, A.; Kalia, A.; Kumar, A.; Abd-Elsalam, K.A. Kuča, K. Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: A review. J. Fungi (Basel), 2020, 6(4), 1-21.
[http://dx.doi.org/10.3390/jof6040351] [PMID: 33317038]
[107]
Sastry, M.; Khan, M.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci., 2003, 85, 162-170.
[108]
Naik, G.G.; Shah, J.; Balasubramaniam, A.K.; Sahu, A.N. Applications of natural product-derived carbon dots in cancer biology. Nanomedicine, 2021, 16(7), 587-608.
[http://dx.doi.org/10.2217/nnm-2020-0424] [PMID: 33660530]
[109]
Naik, G.G.; Alam, M.B.; Pandey, V.; Mohapatra, D.; Dubey, P.K.; Parmar, A.S.; Sahu, A.N. Multi-functional carbon dots from an ayurvedic medicinal plant for cancer cell bioimaging applications. J. Fluoresc., 2020, 30(2), 407-418.
[http://dx.doi.org/10.1007/s10895-020-02515-0] [PMID: 32088852]
[110]
Boobalan, T.; Sethupathi, M.; Sengottuvelan, N.; Kumar, P.; Balaji, P.; Gulyás, B.; Padmanabhan, P.; Selvan, S.T.; Arun, A. Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents. ACS Appl. Nano Mater., 2020, 3(6), 5910-5919.
[http://dx.doi.org/10.1021/acsanm.0c01058]