An Insight into Osmotic Drug Delivery Systems

Page: [16 - 30] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The dosing pattern of the conventional drug delivery system results in continuously changing and unpredictable plasma concentrations as this system has modest control on the release of the drug along with almost negligible effectual concentration near the site of interest. The problems coupled with conventional drug delivery can be triumphed over by employing osmotic drug delivery systems, which are one of the most budding strategies utilizing osmotic pressure to release active pharmaceutical ingredients in an optimized manner at a controlled rate. Various formulation parameters which influence the release of drugs from these systems include osmotic pressure wielded by the core components, the drug’s solubility, and the size of the delivery orifice in conjunction with the characteristics of the semipermeable membrane. However, it is completely autonomous of the gastrointestinal tract’s anatomical environment and concomitant meal ingestion. The aim of this manuscript is to study the earlier osmotic pumps, their working principles, along with their limitations, and novel approaches having significant benefits over older ones. The current manuscript covers all the aspects of the osmotic drug delivery system, including its principle of osmosis, the historical background, its advantages and disadvantages, basic components, various factors influencing its design, its various types, and evaluation parameters. Novel approaches to osmotic drug delivery systems along with future prospective have also been described.

Keywords: Osmosis, semipermeable membrane, osmotic pump, osmotic drug delivery, osmogent, autonomous.

Graphical Abstract

[1]
Sharma, D.; Kumar, D.; Singh, M.; Singh, G.; Rathore, M.S. A review on novel osmotically controlled drug delivery system. Indian J. Pharm., 2012, 3(2), 97-105.
[2]
Gupta, B.P.; Thakur, N.; Jain, N.P.; Banweer, J.; Jain, S. Osmotically controlled drug delivery system with associated drugs. J. Pharm. Pharm. Sci., 2010, 13(4), 571-588.
[http://dx.doi.org/10.18433/J38W25] [PMID: 21486532]
[3]
Prescott, L.F. The need for improved drug delivery in clinical practice.Novel Drug Delivery and Its Therapeutic Application; Prescott, L.F.; Nimmo, W.S., Eds.; John Wiley: UK, 1989, pp. 1-11.
[4]
Bhagat, B.; Hapse, S.; Darkunde, S. Osmotic drug delivery system: An overview. Int. J. Pharm. Pharm. Res., 2014, 2(1), 29-44.
[5]
Chen, J.; Pan, H.; Ye, T.; Liu, D.; Li, Q.; Chen, F.; Yang, X.; Pan, W. Recent aspects of osmotic pump systems: Functionalization, clinical use and advanced imaging technology. Curr. Drug Metab., 2016, 17(3), 279-291.
[http://dx.doi.org/10.2174/1389200216666151015115706] [PMID: 26467064]
[6]
Kumar, D.; Sharma, A.; Painuly, N. A review on osmotically controlled drug delivery systems. Asian J Pharm. Res. Dev., 2018, 6(4), 101-119.
[7]
Gupta, R.; Agarwal, A.; Kushwaha, A. To study the effect of natural polymer on the release of osmotic tablet for colon specific drug delivery system. Int. J. Pharm. Sci. Res., 2021, 12(6), 3410-3417.
[8]
Petkovic´, D.; Shamshirband, S.; Saboohi, H.; Ang, T.F.; Anuar, N.B.; Abdul Rahman, Z.; Pavlovic´, N.T. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies – A comparative study. Infrared Phys. Technol., 2014, 65, 94-102.
[http://dx.doi.org/10.1016/j.infrared.2014.04.005]
[9]
Gavrilović, S.; Denić, N.; Petković, D.; Živić, N.V.; Vujčić, S. Statistical evaluation of mathematics lecture performances by soft computing approach. Comput. Appl. Eng. Educ., 2018.
[http://dx.doi.org/10.1002/cae.21931]
[10]
Petkovic, D.; Jovic, S.; Anicic, O.; Nedic, B.; Pejovic, B. Analyzing of flexible gripper by computational intelligence approach. Mechatronics, 2016, 40, 1-16.
[http://dx.doi.org/10.1016/j.mechatronics.2016.09.001]
[11]
Nikolic´, V.; Petkovic´, D.; Lazov, L.; Milovančević, M. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique. Infrared Phys. Technol., 2016, 77, 45-50.
[http://dx.doi.org/10.1016/j.infrared.2016.05.021]
[12]
Petković, D.; Nikolić, V.; Mitićc, V.V.; Kocić, L. Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorithms. Flow Meas. Instrum., 2017, 54, 172-176.
[http://dx.doi.org/10.1016/j.flowmeasinst.2017.01.007]
[13]
Petkovic´, D.; Pavlovic´, N.T.; Ćojbašic, Z. Wind farm efficiency by adaptive neuro-fuzzy strategy. Int. J. Electr. Power Energy Syst., 2016, 81, 215-221.
[http://dx.doi.org/10.1016/j.ijepes.2016.02.020]
[14]
Bardestani, S.; Givehchi, M.; Younesi, E.; Sajjadi, S.; Shamshirb, S.; Petkovic, D. Predicting turbulent flow friction coefficient using ANFIS Technique. SIVP, 2016, 11, 341-347.
[http://dx.doi.org/10.1007/s11760-016-0948-8]
[15]
Shamshirband, S.; Petković, D.; Javidnia, H.; Gani, A. Sensor data fusion by support vector regression methodology—A comparative study. IEEE Sens. J., 2015, 15(2), 850-854.
[http://dx.doi.org/10.1109/JSEN.2014.2356501]
[16]
Jović, S.; Danesh, A.S.; Younesi, E.; Aničić, O.; Petković, D.; Shamshirband, S. Forecasting of underactuated robotic finger contact forces by support vector regression methodology. Int. J. Pattern Recognit. Artif. Intell., 2016, 30(7), 1659019.
[http://dx.doi.org/10.1142/S0218001416590199]
[17]
Dandagi, P.M.; Koradia, N.V.; Gadad, A.P.; Mastiholimath, V.S.; Sanghvi, M.M. Oral osmotic drug delivery system: An update. Int. J. Res. Pharm. Sci., 2011, 2(2), 225-236.
[18]
Sareen, R.; Jain, N.; Kumar, D. An insight to osmotic drug delivery. Curr. Drug Deliv., 2012, 9(3), 285-296.
[http://dx.doi.org/10.2174/156720112800389106] [PMID: 22452403]
[19]
Patra, C.N.; Swain, S.; Sruti, J.; Patro, A.P.; Panigrahi, K.C.; Beg, S.; Rao, M.E.B. Osmotic drug delivery systems: Basics and design approaches. 2013, 7(2), 150-161.
[http://dx.doi.org/10.2174/1872211311307020007]
[20]
Jadhav, A.; Gangode, B.; Chavan, D.; Patil, M.P.; Kshirsagar, S. A review on oral osmotically driven systems. IJOD, 2016, 4(4), 168-182.
[21]
Thummar, A.; Kalyanwat, R.; Tiwari, A.; Shrivastav, B.; Kyada, C. An overview on osmotic controlled drug delivery system. Int. J. Pharm. Res. Sch, 2013, 2, 209-225.
[22]
Ayesha, S.D.V. A review on controlled porosity osmotic pump drug delivery system and treating hypertension with beta blockers. Int. J. Res. Pharm. Biomed. Sci., 2018, 5(3), 26-39.
[23]
Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm., 2020, 590, 1-15.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119912]
[24]
Patel, H.; Parikh, V.P. An overview of osmotic drug delivery system: An update review. Int. J. Bioassays, 2017, 6(7), 5426-5436.
[http://dx.doi.org/10.21746/ijbio.2017.07.001]
[25]
Singla, D.; Kumar, S.L.H. Nirmala. Osmotic pump drug delivery-a novel approach. Int. J. Res. Pharm. Chem., 2012, 2(2), 661-670.
[26]
Abhijit, D.; Ola, M.; Bhaskar, R.; Bhushan, S.; Mahajan, H.S. Review on formulation aspects of osmotic drug delivery system. Indo Am. J. Pharm. Sci., 2019, 06(05), 9172-9182.
[27]
Keraliya, R.A.; Patel, C.; Patel, P.; Keraliya, V.; Soni, T.G.; Patel, R.C.; Patel, M.M. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm., 2012, 2012, 528079.
[http://dx.doi.org/10.5402/2012/528079] [PMID: 22852100]
[28]
Ghosh, T.; Ghosh, A. Drug delivery through osmotic systems-an overview. J. Appl. Pharm. Sci., 2011, 01(02), 38-49.
[29]
Vyas, S.; Khar, R. Controlled drug delivery: Concept and advances; Vallabh prakashan: New Delhi, 2001, pp. 477-501.
[30]
Sahoo, C.K.; Rao, S.R.M.; Sudhakar, M.; Sahoo, N.K. Advances in osmotic drug delivery system. J. Chem. Pharm. Res., 2015, 7(7), 252-273.
[31]
Rose, S.; Nelson, J.F. A continuous long-term injector. Aust. J. Exp. Biol. Med. Sci., 1955, 33(4), 415-419.
[http://dx.doi.org/10.1038/icb.1955.44] [PMID: 13269346]
[32]
Higuchi, T.; Leeper, H.M. Improved osmotic dispenser employing magnesium sulfate and magnesium chloride. US Patent 3,760,804, 1973.
[33]
Theeuwes, F.; Higuchi, T. Osmotic dispensing device for releasing beneficial agent. US Patent 3,845,770, 1974.
[34]
Gupta, N.; Mishal, A.; Bhosle, Y.; Shetty, S. A review on recent innovation in osmotically controlled drug delivery system. Indian J. Pharm. Biol. Res., 2014, 2(2), 117-129.
[http://dx.doi.org/10.30750/ijpbr.2.2.19]
[35]
Sancheti, V.; Chordiya, M.; Senthilkumaran, K. A review on osmotically drug delivery system. World J. Pharm. Pharm. Sci., 2014, 3, 1708-1728.
[36]
Patel, H.; Patel, U.; Kadikar, H.; Bhimani, B.; Daslaniya, D.; Patel, G. A review on osmotic drug delivery system. Int. Res. J. Pharm., 2012, 3(4), 88-94.
[37]
Gupta, S.; Singh, R.P.; Sharma, R.; Kalyanwat, R.; Lokwani, P. Osmotic Pumps: A Review. Pharm. Glob., 2011, 6(01), 1-10.
[38]
Khatri, N.; Nikam, S.; Bilandi, A. Oral osmotic drug delivery system: A review. Int. J. Pharm. Sci. Res., 2016, 7(6), 2302-2312.
[39]
Bhatt, P. Osmotic drug delivery systems for poorly soluble drugs. The Drug Delivery Companies Report Autumn/Winter; PharmaVentures Ltd., 2004, pp. 26-29.
[40]
Babu, C.A.; Rao, M.P.; Prasad, R.; Ratna, J.V. Controlled-porosity osmotic pump tablets-An Overview. JPRHC, 2010, 2(1), 114-126.
[41]
Verma, R.K.; Krishna, D.M.; Garg, S. Formulated aspects in the development of osmotic polyethylene glycol (PEG) matrix tablets. Eur. J. Pharm. Biopharm., 2011, 70, 556-562.
[42]
Raman, V.K.; Saini, M.; Sharma, A.; Parashar, B. Morchella esculenta: A herbal boon to pharmacology. Int. J. Dev. Res., 2018, 8(3), 19660-19665.
[43]
Gohel, M.; Parikh, R.K.; Shah, N.Y. Osmotic drug delivery: An update. Pharmainfo.net., 2009, 7(2), 47-50.
[44]
Rao, K.R.; Naik, V.V.; Rao, A.A.; Rajesh, A. Osmotic controlled drug delivery system: A review. Int. J. Res. Pharm. Chem., 2015, 1(1), 31-37.
[45]
Gadwal, P.; Rudrawal, P.; Ahamad, D.; Ahmed, A. A review on osmotically regulated devices. Int. J. Pharm. Life Sci., 2012, 1(6), 302-312.
[46]
Ghosh, B.; Mishra, N.; Bose, P.; Kirtania, M.D. Development, evaluation and optimization of osmotic controlled tablets of aceclofenac for rheumatoid arthritis management. Drug Deliv. Lett., 2019, 9(1), 29-36.
[http://dx.doi.org/10.2174/2210303109666181203150830]
[47]
Sayed, S.M.; Farooqui, Z.; Mohammed, M.; Dureshahwar, K.; Farooqui, M. Osmotic drug delivery system: An overview. Int. J. Pharm. Res. Allied Sci., 2015, 4(3), 10-20.
[48]
Sharma, S. Osmotic drug delivery system. Pharmainfo.net, 2008, 6(3)
[49]
Bauer, K.; Kaik, G.; Kaik, B. Osmotic release oral drug delivery system of metoprolol in hypertensive asthmatic patients. Pharmacodynamic effects on beta 2-adrenergic receptors. Hypertension, 1994, 24(3), 339-346.
[http://dx.doi.org/10.1161/01.HYP.24.3.339] [PMID: 7916004]
[50]
Rudnic, E.M.; Burnside, B.A.; Flanner, H.H.; Wassink, S.E.; Couch, R.A.; Pinkett, J.E. Osmotic drug delivery system. U.S. Patent 6,110,498, 2000.
[51]
Thombre, A.G.; DeNoto, A.R.; Gibbes, D.C. Delivery of glipizide from asymmetric membrane capsules using encapsulated excipients. J. Control. Release, 1999, 60(2-3), 333-341.
[http://dx.doi.org/10.1016/S0168-3659(99)00086-3] [PMID: 10425338]
[52]
Jensen, J.L.; Appel, L.E.; Clair, J.H.; Zentner, G.M. Variables that affect the mechanism of drug release from osmotic pumps coated with acrylate/methacrylate copolymer latexes. J. Pharm. Sci., 1995, 84(5), 530-533.
[http://dx.doi.org/10.1002/jps.2600840503] [PMID: 7658339]
[53]
Mane, S.S.; Kamble, M.S.; Chaudhari, P.D.; Bhosale, A.V. An overview on oral osmotically controlled drug delivery system. Int. J. Univers. Pharm. Life Sci., 2012, 2(2), 19-36.
[54]
Lindstedt, B.; Ragnarsson, G.; Hjärtstam, J. Osmotic pumping as a release mechanism for membrane-coated drug formulations. Int. J. Pharm., 1989, 56(3), 261-268.
[http://dx.doi.org/10.1016/0378-5173(89)90023-9]
[55]
Thulasiramaraju, T.V.; Reddy, S.R.; Patnaik, N.A.; Kumar, K.S. Osmotic drug delivery system: A promising drug delivery technology. Asian J. Res. Chem. Pharm. Sci., 2013, 1(1), 7-22.
[56]
Zentner, G.M.; Rork, G.S.; Himmelstein, K.J. Osmotic flow through controlled porosity films: An approach to delivery of water soluble compounds. J. Control. Release, 1985, 2, 217-229.
[http://dx.doi.org/10.1016/0168-3659(85)90047-1]
[57]
Zentner, G.M.; Rork, G.S.; Himmelstein, K.J. Controlled porosity osmotic pump. U.S. Patent 4,968,507, 1990.
[58]
Kelbert, M.; Béchard, S.R. Evaluation of a cellulose acetate (CA) latex as coating material for controlled release products. Drug Dev. Ind. Pharm., 2008, 18(5), 519-538.
[http://dx.doi.org/10.3109/03639049209043709]
[59]
Guo, J.H. Effects of plasticizers on water permeation and mechanical properties of cellulose acetate: Antiplasticization in slightly plasticized polymer. Drug Dev. Ind. Pharm., 1993, 19(13), 1541-1555.
[http://dx.doi.org/10.3109/03639049309069325]
[60]
Bindschaedler, C.; Gurny, R.; Doelker, E. Mechanically strong films produced from cellulose acetate latexes. J. Pharm. Pharmacol., 1987, 39(5), 335-338.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03394.x] [PMID: 2886580]
[61]
Guo, J.H. An investigation into the formation of plasticizer channels in plasticized polymer films. Drug Dev. Ind. Pharm., 1994, 20(11), 1883-1893.
[http://dx.doi.org/10.3109/03639049409050215]
[62]
Ganesh, N.S.; Jacob, L.; Chandy, V. Review on controlled porosity osmotic pump tablets and its basic components. Int. J. Res. Pharm. Biosci., 2017, 4(3), 1-14.
[63]
Khanna, S.C. Ciba-Geigy Corp.. Therapeutic system for sparingly soluble active ingredients. U.S. Patent 4,992,278, 1991.
[64]
Verma, R.K.; Mishra, B.; Garg, S. Osmotically controlled oral drug delivery. Drug Dev. Ind. Pharm., 2000, 26(7), 695-708.
[http://dx.doi.org/10.1081/DDC-100101287] [PMID: 10872087]
[65]
Srinath, P.; Karar, V. Osmogens CR preparations. Int. J. Pharm., 1998, 175, 95-107.
[66]
Sultana, A.; Varun, D. A review on controlled porosity osmotic pump drug delivery system & treating hypertension with beta blockers. Int. J. Pharm. Biomed. Res., 2018, 5(3), 26-39.
[67]
Suryavanshi, V.; Derle, D. Development and evaluation of sandwiched osmotic system of isoxsuprine hydrochloride. J. Pharm. Sci. & Res., 2016, 8(5), 265-270.
[68]
Thakor, R.S.; Majmudar, F.; Patel, J.; Rajaput, G.C. Osmotic drug delivery systems current scenario. J. Pharm. Res., 2010, 3(4), 771-775.
[69]
Cortese, R.; Theeuwes, F. Osmotic device with hydrogel driving member. U.S. Patent 4,327,725, 1982.
[70]
Swanson, D.R.; Barclay, B.L.; Wong, P.S.; Theeuwes, F. Nifedipine gastrointestinal therapeutic system. Am. J. Med., 1987, 83(6B), 3-9.
[http://dx.doi.org/10.1016/0002-9343(87)90629-2] [PMID: 3503595]
[71]
Edavalath, S.; Shivanand, K.; Prakasam, K.; Rao, B.P. Formulation development and optimization of controlled porosity osmotic pump tablets of diclofenac sodium. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 80-87.
[72]
Zentner, G.M.; Rork, G.S.; Himmelstein, K.J. The controlled porosity osmotic pump. J. Control. Release, 1985, 1(4), 269-282.
[http://dx.doi.org/10.1016/0168-3659(85)90003-3]
[73]
Schultz, P.; Kleinebudde, P. A new multi particulate delayed release system. Part I. Dissolution properties and release mechanism. J. Control. Release, 1997, 47(2), 181-189.
[http://dx.doi.org/10.1016/S0168-3659(97)01634-9]
[74]
Baker, R.W. Osmotic and mechanical devices. Controlled Release of Biologically Active Agents; John Wiley and Sons: New York, 1987, pp. 132-155.
[75]
Theeuwes, F.; Wong, P.S.L.; Burkoth, T.L.; Fox, D.A. Osmotic systems for colon-targeted drug delivery. Colonic Drug Absorption and Metabolism; Marcel Dekker: New York, 1993, pp. 137-158.
[76]
Liu, L.; Ku, J.; Khang, G.; Lee, B.; Rhee, J.M.; Lee, H.B. Nifedipine controlled delivery by sandwiched osmotic tablet system. J. Control. Release, 2000, 68(2), 145-156.
[http://dx.doi.org/10.1016/S0168-3659(00)00243-1] [PMID: 10925123]
[77]
Haslam, J.L.; Merfeld, A.E.; Rork, G.S. Surface wetting effects in the lipid osmotic pump. Int. J. Pharm., 1989, 56(3), 227-233.
[http://dx.doi.org/10.1016/0378-5173(89)90019-7]
[78]
Dhage, C.M.; Shinkar, D.M.; Pathan, V.T.; Jadhav, A.G. A review on osmotic drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2020, 62(1), 160-167.
[79]
Sowjanya, M.; Rao, V.P.; Srinivasa, P.B.; Pallavi, K. Osmotic drug delivery systems: A review. Inventi Rapid, 2017, 3, 1-9.
[80]
Farheen, F.; Bhardwaj, S. A review on osmotically regulated systems. PharmaTutor Magzine, 2014, 2(5), 51-64.
[81]
Ghate, S.K.; Sakarkar, D.M. Development and evaluation of osmotically controlled oral drug delivery system. Indo Am. J. Pharm. Sci., 2017, 7(09), 459-470.
[http://dx.doi.org/10.5958/2231-5713.2017.00033.2]
[82]
Kalakota, V.V.R.; Kondeti, R.R. A review on the novel approach to osmotic pump drug delivery systems. IJIPSR, 2014, 2(9), 1928-1942.
[83]
Pasha, S.M.; Ali, S.A.; Ahmed, O.S.; Wasiq, O.; Mukaram, M.; Aala, M.A.; Ali, M.A. Osmotic drug delivery system of valsartan. Int. J. Res. Pharma. Sci. Technol., 2018, 1(2), 43-52.
[84]
Santus, G.; Baker, R.W. Osmotic drug delivery: A review of the patent literature. J. Control. Release, 1995, 35(1), 1-21.
[http://dx.doi.org/10.1016/0168-3659(95)00013-X]
[85]
Gawai, M.N.; Aher, S.S.; Saudager, R.B. A review on oral osmotically controlled releases drug delivery system. Asian J. Pharm. Res, 2016, 6(1), 49-55.
[86]
Shokri, J.; Ahmadi, P.; Rashidi, P.; Shahsavari, M.; Rajabi-Siahboomi, A.; Nokhodchi, A. Swellable elementary osmotic pump (SEOP): An effective device for delivery of poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2008, 68(2), 289-297.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.006] [PMID: 17616378]
[87]
Kumaravelrajan, R.; Narayanan, N.; Suba, V.; Bhaskar, K. Simultaneous delivery of Nifedipine and Metoprolol tartarate using sandwiched osmotic pump tablet system. Int. J. Pharm., 2010, 399(1-2), 60-70.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.003] [PMID: 20696225]
[88]
Banerjee, P.; Satpathy, T.K. A comprehensive review on osmotically controlled oral device. Int. J. Pharm. Sci. Res., 2020, 11(10), 4805-4821.
[89]
Lodhe, K.A.; Sancheti, V.N. Review on osmotically controlled drug delivery system. International Journal of Trend in Scientific Research and Development, 2020, 5(1), 961-965.
[90]
Kenjale, P.P.; Joshi, M.A.; Khatavkar, U.N.; Dhapte, V.V.; Pokharkar, V.B. Paroxetine hydrochloride push-pull osmotic pump tablets: Designing an innovative, scalable push-pull osmotic drug delivery system using qbd approach. Drug Deliv. Lett., 2020, 10(2), 104-116.
[http://dx.doi.org/10.2174/2210303109666190902112941]
[91]
Gupta, R.N.; Gupta, R.; Basniwal, P.K.; Rathore, G.S. Osmotically controlled oral drug delivery systems: A review. Int. J. Pharma Sci., 2010, 1(2), 269-275.
[92]
Khavare, N.B.; Dasankoppa, F.S.; Najundaswamy, N.G. A review on key parameters and components in designing of osmotic controlled oral drug delivery systems. Indian J. Nov. Drug Deliv., 2010, 2(4), 122-131.
[93]
Kannadasan, M.; Rastogi, H. A complete conclusion of osmotic drug delivery system to date. Crit. Rev. Pharm. Sci., 2016, 5(2), 23-48.
[94]
Rohloff, C.M.; Alessi, T.R.; Yang, B.; Dahms, J.; Carr, J.P.; Lautenbach, S.D. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J. Diabetes Sci. Technol., 2008, 2(3), 461-467.
[http://dx.doi.org/10.1177/193229680800200316] [PMID: 19885211]
[95]
Mathur, M.; Mishra, R.; Mehta, T.; Bhatt, N.; Gulati, I.; Dhall, V. Development of controlled porosity osmotic pump of metoprolol succinate: Design, optimization and characterization. J. Pharm. Sci. & Res., 2015, 7(11), 1021-1031.
[96]
Singh, K.; Walia, M.K.; Agarwal, G.; Harikumar, S.L. Osmotic pump drug delivery system. J. Drug Deliv. Ther., 2013, 3(5), 156-162.
[http://dx.doi.org/10.22270/jddt.v3i5.636]
[97]
Karri, S.R.; Reddy, V.V.S.N.; Radhakrishna, K.; Ganesh, G.N.K. Development of osmotically controlled oral drug delivery system for nateglinide an anti-diabetic drug. Int. J. Pharm. Pharm. Sci., 2014, 6(7), 120-125.
[98]
Malaterre, V.; Ogorka, J.; Loggia, N.; Gurny, R. Oral osmotically driven systems: 30 years of development and clinical use. Eur. J. Pharm. Biopharm., 2009, 73(3), 311-323.
[http://dx.doi.org/10.1016/j.ejpb.2009.07.002] [PMID: 19602438]
[99]
Pandey, S.; Devmurari, V. Osmotic pump drug delivery devices: From implant to sandwiched oral therapeutic system. Int. J. Pharm. Tech. Res., 2010, 2(1), 693-699.
[100]
Rajput, R.; Kumar, K.M.K.P.; Arya, D.S.; Das, A.K.; Zargar, A.H.; Tiwaskar, M.; Motghare, V.; Shah, R.; Ingole, S.; Jain, R. Osmotic controlled drug delivery system (OSMO technology) and its impact on diabetes care. Int. J. Res. Med. Sci, 2021, 9(1), 303-309.
[http://dx.doi.org/10.18203/2320-6012.ijrms20205861]
[101]
Pawar, V.K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G.T. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems. Drug Deliv., 2011, 18(2), 97-110.
[http://dx.doi.org/10.3109/10717544.2010.520354] [PMID: 20958237]
[102]
Sahoo, C.K.; Sahoo, N.K.; Rao, S.R.M.; Sudhakar, M.; Satyanarayana, K. A review on controlled porosity osmotic pump tablets and its evaluation. Bull. Fac. Pharm. Cairo Univ., 2015, 53(2), 195-205.
[http://dx.doi.org/10.1016/j.bfopcu.2015.10.004]
[103]
Tarkase, K.N.; Kadu, P.V. Formulation development, optimization and evaluation of bilayer push-pull osmotic pump tablet of atenolol using 32 factorial design. Int. J. Drug Res. Tech., 2016, 6(3), 150-163.
[104]
Venkateswarlu, B.S.; Pasupathi, C.; Pasupathi, A.; Jaykar, B.; Chandira, R.M.; Palanisamy, P. Osmotic drug delivery system: A review. J. Drug Deliv. Ther., 2019, 9(4), 759-764.