Synthesis, Characterization, DPPH, Ferric Reducing, and Ferrous Ion- Chelating Activities of Isophthalate Schiff Bases

Page: [31 - 39] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aims: The synthesis of bioactive compounds has antioxidant potential.

Background: All aerobic bodies including human beings, have antioxidant defense systems that protect them from oxidative damage, and many enzymes to remove or heal damaged molecules. However, this normal antioxidant mechanism can be incompetent, and hence dietary intakes of antioxidant compounds are important.

Objective: This study aimed to synthesize isophthalate Schiff base derivatives 1-14 and screen them for their antioxidant activities (DPPH, ferrous ion Fe2+ chelating, and ferric Fe3+ reducing activities).

Methods: Schiff bases 1-14 were synthesized by a two-step reaction scheme. The first step was the esterification reaction of isophthalic acid followed by the hydrazinolysis of methyl isophthalate to afford isophthalic dihydrazide. The second step was the condensation reaction of isophthalic dihydrazide with various benzaldehydes to afford Schiff bases 1-14. Synthetic compounds were characterized by spectroscopic techniques such as 1 H-NMR and EI-MS.

Results: Compounds were screened for their antioxidant activities (DPPH, ferrous ion Fe2+ chelating, and ferric Fe3+ reducing activities). Most of the compounds showed significant antioxidant activities. A structure- activity relationship has also been discussed.

Conclusion: Most of the synthetic isophthalate Schiff bases were found to be moderately active when screened for their antioxidant activities by three assays such as DPPH radical scavenging, ferrous ionchelating, and ferric reducing activities. These moderately active compounds can serve as lead molecules to further modify the structure and identify more powerful antioxidant agents.

Keywords: Isophthalic acid, Schiff base, DPPH, ferric ion reducing activity, ferrous ion chelating activity.

Graphical Abstract

[1]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[2]
Babior, B.M.; Woodman, R.C. Chronic granulomatous disease. Seminars in hematology; Elsevier, 1990, 3, pp. 247-259.
[3]
Badami, S.; Gupta, M.K.; Suresh, B. Antioxidant activity of the ethanolic extract of Striga orobanchioides. J. Ethnopharmacol., 2003, 85(2-3), 227-230.
[http://dx.doi.org/10.1016/S0378-8741(03)00021-7] [PMID: 12639745]
[4]
Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc., 1998, 75(2), 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9] [PMID: 32287334]
[5]
Granelli, K.; Björck, L.; Appelqvist, L.Å. The variation of superoxide dismutase (SOD) and xanthine oxidase (XO) activities in milk using an improved method to quantitate SOD activity. J. Sci. Food Agric., 1995, 67, 85-91.
[http://dx.doi.org/10.1002/jsfa.2740670114]
[6]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995, 64, 97-112.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000525] [PMID: 7574505]
[7]
Sun, J.; Chen, Y.; Li, M.; Ge, Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic. Biol. Med., 1998, 24(4), 586-593.
[http://dx.doi.org/10.1016/S0891-5849(97)00291-8] [PMID: 9559871]
[8]
Sheehan, R.J. Terephthalic acid, dimethyl terephthalate, and isophthalic acid.Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library, 2000.
[http://dx.doi.org/10.1002/14356007.a26_193]
[9]
Dunn, J.B.; Burns, M.L.; Hunter, S.E.; Savage, P.E. Hydrothermal stability of aromatic carboxylic acids. J. Supercrit. Fluids, 2003, 27, 263-274.
[http://dx.doi.org/10.1016/S0896-8446(02)00241-3]
[10]
Stacy, R.; loire, N.; levine, H. Poly (benzoxazoles) I. Homocondensation of 3-amino-4-hydroxybenzonitrile and condensation of 3,3′-dihydroxybenzidine with isophthalamide. Amer. Chem. Soc., Div. Polymer Chem., Polymer Preprints, 1966, 7, 161.
[11]
Delman, A.D. Heteroatom ring-containing polymers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry, 1968, 2, 153-182.
[http://dx.doi.org/10.1080/15321796808050897]
[12]
Ulrich, R.D.; Stille, JK Macromolecular Science; Springer, 1978, pp. 243-263.
[13]
Starr, L. Aromatic polyamides of 2, 6-naphthalenedicarboxylic acid. J. Polym. Sci. A1, 1966, 4, 3041-3046.
[http://dx.doi.org/10.1002/pol.1966.150041210]
[14]
Liou, G.S.; Huang, N.K.; Yang, Y.L. Synthesis, photoluminescent and electrochromic properties of new aromatic poly(amine-hydrazide)s and poly(amine-1,3,4-oxadiazole)s derived from 4,4′-dicarboxy-4″-methyltriphenylamine. Eur. Polym. J., 2006, 42, 2283-2291.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.06.021]
[15]
Talman, V.; Amadio, M.; Osera, C.; Sorvari, S.; Boije Af Gennäs, G.; Yli-Kauhaluoma, J.; Rossi, D.; Govoni, S.; Collina, S.; Ekokoski, E.; Tuominen, R.K.; Pascale, A. The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCα activation in SH-SY5Y cells. Pharmacol. Res., 2013, 73, 44-54.
[http://dx.doi.org/10.1016/j.phrs.2013.04.008] [PMID: 23643828]
[16]
Eissa, H.H. Synthesis, characterization and antibacterial activity of macrocyclic Schiff bases based on 1,3-docarbonyl phenyl dihydrazide, 1,4-docarbonyl phenyl dihydrazide.Organic Chemistry: Current Research; Los Angeles, 2013, 2, pp. 1-8.
[17]
(a) Aziz, A.N.; Taha, M.; Ismail, N.H.; Anouar, H.; Yousuf, S.; Jamil, W.; Awang, K.; Ahmat, N.; Khan, K.M.; Kashif, S.M. Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-dimethoxybenzenamine schiff bases. Molecules, 2014, 19(6), 8414-8433.
[http://dx.doi.org/10.3390/molecules19068414] [PMID: 24950444];
(b) Khan, K.M.; Taha, M.; Naz, F.; Siddiqui, S.; Ali, S.; Rahim, F.; Perveen, S.; Choudhary, M.I. Acylhydrazide Schiff bases: DPPH radical and superoxide anion scavengers. Med. Chem., 2012, 8(4), 705-710.
[http://dx.doi.org/10.2174/157340612801216111] [PMID: 22571188];
c) Khan, K.M.; Shah, Z.; Ahmad, V.U.; Khan, M.; Taha, M.; Rahim, F.; Ali, S.; Ambreen, N.; Perveen, S.; Choudhary, M.I.; Voelter, W. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers. Med. Chem., 2012, 8(3), 452-461.
[http://dx.doi.org/10.2174/1573406411208030452] [PMID: 22530900];
(d) Khan, K.M.; Karim, A.; Saied, S.; Ambreen, N.; Saleem, M. Synthesis, Antioxidant and Carbonic Anhydrase Inhibitory Potential of Schiff Bases of Thiazoles. J. Pharm. Res., 2012, 5, 661-663.;
(e) Khan, K.M.; Khan, M.; Ambreen, N.; Rahim, F.; Muhammad, B.; Ali, S.; Haider, S.M.; Perveen, S.; Choudhary, M.I. Bis-Schiff bases of isatins: A new class of antioxidant. J. Pharm. Res., 2011, 4, 3402-3404.
[18]
Cheng, L-X.; Tang, J-J.; Luo, H.; Jin, X-L.; Dai, F.; Yang, J.; Qian, Y-P.; Li, X-Z.; Zhou, B. Antioxidant and antiproliferative activities of hydroxyl-substituted Schiff bases. Bioorg. Med. Chem. Lett., 2010, 20(8), 2417-2420.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.039] [PMID: 20346660]
[19]
Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem., 2012, 130, 1036-1043.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.127]
[20]
Puntel, R.L.; Nogueira, C.W.; Rocha, J.B.T. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem. Res., 2005, 30(2), 225-235.
[http://dx.doi.org/10.1007/s11064-004-2445-7] [PMID: 15895826]
[21]
Benzie, I.F.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem., 1999, 47(2), 633-636.
[http://dx.doi.org/10.1021/jf9807768] [PMID: 10563944]