A Review on Benzimidazole Scaffolds as Inhibitors of Mycobacterium tuberculosis Mycolyl-arabinogalactan-peptidoglycan Complex Biosynthesis

Page: [668 - 681] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Tuberculosis is one of the oldest known infectious diseases to mankind, caused by Mycobacterium tuberculosis. Although current treatment using first-line anti-tubercular drugs is proven to be effective, an infection caused by resistant strains, as in multidrug-resistant and extensive drug- resistant tuberculosis is still an impending challenge to treat.

Objective: Our objective is to focus on reporting benzimidazole derivatives that are targeting mycobacterial membrane biosynthesis, particularly the mycobacterial mycolyl-arabinogalactanpeptidoglycan complexes. From the literature survey, it has been noted that targeting Mycobacterium tuberculosis cell membrane biosynthesis is an effective approach to fight against drug resistance in tuberculosis.

Methods: Articles on benzimidazole derivatives as inhibitors of proteins responsible for the biosynthesis of the mycobacterial mycolyl-arabinogalactan-peptidoglycan complex have been selected.

Results: By reviewing the anti-tubercular activity of the reported benzimidazole derivatives, we have concluded that a correlation between benzimidazole derivatives and their biological activity is found. It has been noted that benzimidazole derivatives with substitution at N1, C2, C5, and C6 positions have shown a greater affinity towards target proteins.

Conclusion: Even though scientific advancement toward the prevention of tuberculosis has been quite significant in the past few decades, infection caused by resistant strains is a major concern. We have collected data on benzimidazole derivatives that inhibit the biosynthesis of mycolic acid, arabinogalactan and, peptidoglycan. From our observations, we conclude that majority of the molecules have given anti-tubercular activity in nanomolar range. Still there are few mycobacterial membrane biosynthesis proteins where benzimidazole as an inhibitor has yet to be explored.

Keywords: Tuberculosis, benzimidazole, anti-tubercular, mAGP, mycolic acid, arabinogalactan, peptidoglycan.

Graphical Abstract

[1]
Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg., 2017, 58(1), E9-E12.
[PMID: 28515626]
[2]
Cardona, P-J.; Català, M.; Prats, C. Origin of tuberculosis in the Paleolithic predicts unprecedented population growth and female resistance. Sci. Rep., 2020, 10(1), 42.
[http://dx.doi.org/10.1038/s41598-019-56769-1] [PMID: 31913313]
[3]
History of Tuberculosis. 2009. Available from: https://www.news-medical.net/health/History-of-Tuberculosis.aspx
[4]
Zaman, K. Tuberculosis: A global health problem. J. Health Popul. Nutr., 2010, 28(2), 111-113.
[http://dx.doi.org/10.3329/jhpn.v28i2.4879] [PMID: 20411672]
[5]
Sotgiu, G.; Centis, R.; D’ambrosio, L.; Migliori, G.B. Tuberculosis treatment and drug regimens. Cold Spring Harb. Perspect. Med., 2015, 5(5), a017822.
[http://dx.doi.org/10.1101/cshperspect.a017822] [PMID: 25573773]
[6]
Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin. Microbiol. Rev., 2018, 31(4), e00021-18.
[http://dx.doi.org/10.1128/CMR.00021-18] [PMID: 30021818]
[7]
Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965]
[8]
Keng Yoon, Y.; Ashraf Ali, M.; Choon, T.S.; Ismail, R.; Chee Wei, A.; Suresh Kumar, R.; Osman, H.; Beevi, F. Antituberculosis: Synthesis and antimycobacterial activity of novel benzimidazole derivatives. BioMed Res. Int., 2013, 2013, 926309.
[http://dx.doi.org/10.1155/2013/926309] [PMID: 24381946]
[9]
Mader, M.; de Dios, A.; Shih, C.; Bonjouklian, R.; Li, T.; White, W.; López de Uralde, B.; Sánchez-Martinez, C.; del Prado, M.; Jaramillo, C.; de Diego, E.; Martín Cabrejas, L.M.; Dominguez, C.; Montero, C.; Shepherd, T.; Dally, R.; Toth, J.E.; Chatterjee, A.; Pleite, S.; Blanco-Urgoiti, J.; Perez, L.; Barberis, M.; Lorite, M.J.; Jambrina, E.; Nevill, C.R., Jr; Lee, P.A.; Schultz, R.C.; Wolos, J.A.; Li, L.C.; Campbell, R.M.; Anderson, B.D. Imidazolyl benzimidazoles and imidazo[4,5-b]pyridines as potent p38alpha MAP kinase inhibitors with excellent in vivo antiinflammatory properties. Bioorg. Med. Chem. Lett., 2008, 18(1), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.106] [PMID: 18039577]
[10]
Komazin, G.; Ptak, R.G.; Emmer, B.T.; Townsend, L.B.; Drach, J.C. Resistance of human cytomegalovirus to the benzimidazole Lribonucleoside maribavir maps to UL27. J. Virol., 2003, 77(21), 11499-11506.
[http://dx.doi.org/10.1128/JVI.77.21.11499-11506.2003] [PMID: 14557635]
[11]
Rao, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-hIV activity of 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole stru cturally-related 1,2-substituted benzimidazoles. Farmaco, 2002, 57(10), 819-823.
[http://dx.doi.org/10.1016/S0014-827X(02)01300-9] [PMID: 12420877]
[12]
Mederski, W.W.K.R.; Dorsch, D.; Anzali, S.; Gleitz, J.; Cezanne, B.; Tsaklakidis, C. Halothiophene benzimidazoles as P1 surrogates of inhibitors of blood coagulation factor Xa. Bioorg. Med. Chem. Lett., 2004, 14(14), 3763-3769.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.097] [PMID: 15203158]
[13]
Horton, R.J. Benzimidazoles in a wormy world. Parasitol. Today, 1990, 6(4), 106.
[http://dx.doi.org/10.1016/0169-4758(90)90225-S] [PMID: 15463310]
[14]
Fonseca, T.; Gigante, B.; Gilchrist, T.L. A short synthesis of phenanthro[2,3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 2001, 57(9), 1793-1799.
[http://dx.doi.org/10.1016/S0040-4020(00)01158-3]
[15]
Mathew, B.; Suresh, J.; Vinod, D. Antitumour activity of 5-[(2E)-1-(1H-benzimidazol-2-yl)-3-substituted phenylprop-2-en-1-ylidene] pyrimidine-2,4,6(1H,3H,5H)-triones against Dalton’s ascitic lymphoma in mice. Med. Chem. Res., 2013, 22(8), 3911-3917.
[http://dx.doi.org/10.1007/s00044-012-0407-1]
[16]
Mathew, B.; Suresh, J. Synthesis and in silico design of some novel imines of 5- amino-1,3,4-thiadiazole-2-thiol linked to (1h-benzimidazole-2-yl) 3-substituted phenyl prop-2-enes. Indian J. Chem., 2013, 22, 337-340.
[17]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[18]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J-L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[19]
Zhang, Y-L.; Yang, R.; Xia, L-Y.; Man, R-J.; Chu, Y-C.; Jiang, AQ.; Wang, Z.C.; Zhu, H.L. Synthesis, anticancer activity and molecular docking studies on 1,2-diarylbenzimidazole analogues as anti-tubulin agents. Bioorg. Chem., 2019, 92, 103219.
[http://dx.doi.org/10.1016/j.bioorg.2019.103219] [PMID: 31476616]
[20]
Zarrinmayeh, H.; Nunes, A.M.; Ornstein, P.L.; Zimmerman, D.M.; Arnold, M.B.; Schober, D.A.; Gackenheimer, S.L.; Bruns, R.F.; Hipskind, P.A.; Britton, T.C.; Cantrell, B.E.; Gehlert, D.R. Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists. J. Med. Chem., 1998, 41(15), 2709-2719.
[http://dx.doi.org/10.1021/jm9706630] [PMID: 9667962]
[21]
Mavrova, A.Ts.; Yancheva, D.; Anastassova, N.; Anichina, K.; Zvezdanovic, J.; Djordjevic, A.; Markovic, D.; Smelcerovic, A. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg. Med. Chem., 2015, 23(19), 6317-6326.
[http://dx.doi.org/10.1016/j.bmc.2015.08.029] [PMID: 26344590]
[22]
Roth, T.; Morningstar, M.L.; Boyer, P.L.; Hughes, S.H.; Buckheit, R.W., Jr; Michejda, C.J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J. Med. Chem., 1997, 40(26), 4199-4207.
[http://dx.doi.org/10.1021/jm970096g] [PMID: 9435891]
[23]
Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R., Jr; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem. J., 2019, 476(14), 1995-2016.
[http://dx.doi.org/10.1042/BCJ20190324] [PMID: 31320388]
[24]
Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta, 2016, 1858(5), 980-987.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.018] [PMID: 26514603]
[25]
Chen, H.; Nyantakyi, S.A.; Li, M.; Gopal, P.; Aziz, D.B.; Yang, T.; Moreira, W.; Gengenbacher, M.; Dick, T.; Go, M.L. The Mycobacterial membrane: A novel target space for anti-tubercular drugs. Front. Microbiol., 2018, 9, 1627.
[http://dx.doi.org/10.3389/fmicb.2018.01627] [PMID: 30072978]
[26]
Moxon, E.R.; Kroll, J.S. The role of bacterial polysaccharide capsules as virulence factors. Curr. Top. Microbiol. Immunol., 1990, 150, 65-85.
[http://dx.doi.org/10.1007/978-3-642-74694-9_4] [PMID: 2404690]
[27]
Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev., 2019, 43(5), 548-575.
[http://dx.doi.org/10.1093/femsre/fuz016] [PMID: 31183501]
[28]
Pawełczyk, J; Kremer, L The molecular genetics of mycolic acid biosynthesis. Microbiol. Spectr., 2014, 2(4)
[http://dx.doi.org/10.1128/9781555818845.ch29]
[29]
Marrakchi, H.; Lanéelle, M-A.; Daffé, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. Biol., 2014, 21(1), 67-85.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.011] [PMID: 24374164]
[30]
Zhu, C.; Liu, Y.; Hu, L.; Yang, M.; He, Z-G. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J. Biol. Chem., 2018, 293(43), 16741-16750.
[http://dx.doi.org/10.1074/jbc.RA118.002693] [PMID: 30185616]
[31]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[32]
Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol., 2007, 64(6), 1442-1454.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05761.x] [PMID: 17555433]
[33]
Choi, K.H.; Kremer, L.; Besra, G.S.; Rock, C.O. Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(36), 28201-28207.
[http://dx.doi.org/10.1074/jbc.M003241200] [PMID: 10840036]
[34]
Kremer, L.; Nampoothiri, K.M.; Lesjean, S.; Dover, L.G.; Graham, S.; Betts, J.; Brennan, P.J.; Minnikin, D.E.; Locht, C.; Besra, G.S. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J. Biol. Chem., 2001, 276(30), 27967-27974.
[http://dx.doi.org/10.1074/jbc.M103687200] [PMID: 11373295]
[35]
Sacco, E.; Covarrubias, A.S.; O’Hare, H.M.; Carroll, P.; Eynard, N.; Jones, T.A.; Parish, T.; Daffé, M.; Bäckbro, K.; Quémard, A. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14628-14633.
[http://dx.doi.org/10.1073/pnas.0704132104] [PMID: 17804795]
[36]
Nikaido, H. RND transporters in the living world. Res. Microbiol., 2018, 169(7-8), 363-371.
[http://dx.doi.org/10.1016/j.resmic.2018.03.001] [PMID: 29577985]
[37]
Bhaskar, V.; Namboori, K.; Pappachen, L.K. in silico discovery of novel ligands for anti-tubercular targets using computer aided drug design. Res. J. Pharm. Technol., 2019, 12(11), 5646.
[http://dx.doi.org/10.5958/0974-360X.2019.00977.6]
[38]
McNeil, M.B.; Dennison, D.; Parish, T. Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis. Microbiology, 2017, 163(7), 1065-1070.
[http://dx.doi.org/10.1099/mic.0.000498] [PMID: 28703701]
[39]
Degiacomi, G.; Benjak, A.; Madacki, J.; Boldrin, F.; Provvedi, R.; Palù, G.; Kordulakova, J.; Cole, S.T.; Manganelli, R. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci. Rep., 2017, 7(1), 43495.
[http://dx.doi.org/10.1038/srep43495] [PMID: 28240248]
[40]
Stanley, S.A.; Grant, S.S.; Kawate, T.; Iwase, N.; Shimizu, M.; Wivagg, C.; Silvis, M.; Kazyanskaya, E.; Aquadro, J.; Golas, A.; Fitzgerald, M.; Dai, H.; Zhang, L.; Hung, D.T. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem. Biol., 2012, 7(8), 1377-1384.
[http://dx.doi.org/10.1021/cb300151m] [PMID: 22577943]
[41]
Korycka-Machała, M.; Viljoen, A.; Pawełczyk, J.; Borówka, P.; Dziadek, B.; Gobis, K.; Brzostek, A.; Kawka, M.; Blaise, M.; Strapagiel, D.; Kremer, L.; Dziadek, J. 1H-Benzo[d]Imidazole derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2019, 63(10), e00441-19.
[http://dx.doi.org/10.1128/AAC.00441-19] [PMID: 31332069]
[42]
Rozwarski, D.A.; Vilchèze, C.; Sugantino, M.; Bittman, R.; Sacchettini, J.C. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J. Biol. Chem., 1999, 274(22), 15582-15589.
[http://dx.doi.org/10.1074/jbc.274.22.15582] [PMID: 10336454]
[43]
Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2005, 18(1), 81-101.
[http://dx.doi.org/10.1128/CMR.18.1.81-101.2005] [PMID: 15653820]
[44]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[45]
Martínez-Hoyos, M.; Perez-Herran, E.; Gulten, G.; Encinas, L.; Álvarez-Gómez, D.; Alvarez, E.; Ferrer-Bazaga, S.; García-Pérez, A.; Ortega, F.; Angulo-Barturen, I.; Rullas-Trincado, J.; Blanco Ruano, D.; Torres, P.; Castañeda, P.; Huss, S.; Fernández Menéndez, R.; González Del Valle, S.; Ballell, L.; Barros, D.; Modha, S.; Dhar, N.; Signorino-Gelo, F.; McKinney, J.D.; García-Bustos, J.F.; Lavandera, J.L.; Sacchettini, J.C.; Jimenez, M.S.; Martín-Casabona, N.; Castro-Pichel, J.; Mendoza-Losana, A. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.006] [PMID: 27428438]
[46]
Štular, T.; Lešnik, S.; Rožman, K.; Schink, J.; Zdouc, M.; Ghysels, A.; Liu, F.; Aldrich, C.C.; Haupt, V.J.; Salentin, S.; Daminelli, S.; Schroeder, M.; Langer, T.; Gobec, S.; Janežič, D.; Konc, J. Discovery of Mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J. Med. Chem., 2016, 59(24), 11069-11078.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01277] [PMID: 27936766]
[47]
Kamsri, P.; Hanwarinroj, C.; Phusi, N.; Pornprom, T.; Chayajarus, K.; Punkvang, A.; Suttipanta, N.; Srimanote, P.; Suttisintong, K.; Songsiriritthigul, C.; Saparpakorn, P.; Hannongbua, S.; Rattanabunyong, S.; Seetaha, S.; Choowongkomon, K.; Sureram, S.; Kittakoop, P.; Hongmanee, P.; Santanirand, P.; Chen, Z.; Zhu, W.; Blood, R.A.; Takebayashi, Y.; Hinchliffe, P.; Mulholland, A.J.; Spencer, J.; Pungpo, P. Discovery of new and potent InhA inhibitors as antituberculosis agents: Structure-based virtual screening validated by biological assays and X-ray crystallography. J. Chem. Inf. Model., 2020, 60(1), 226-234.
[http://dx.doi.org/10.1021/acs.jcim.9b00918] [PMID: 31820972]
[48]
Duan, X.; Xiang, X.; Xie, J. Crucial components of Mycobacterium type II fatty acid biosynthesis (Fas-II) and their inhibitors. FEMS Microbiol. Lett., 2014, 360(2), 87-99.
[http://dx.doi.org/10.1111/1574-6968.12597] [PMID: 25227413]
[49]
Bollela, V.R.; Namburete, E.I.; Feliciano, C.S.; Macheque, D.; Harrison, L.H.; Caminero, J.A. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2016, 20(8), 1099-1104.
[http://dx.doi.org/10.5588/ijtld.15.0864] [PMID: 27393546]
[50]
Smriti, Y.; Bharath, K.I.; Shrinidhi, B.R.; Pooja, H.J.; Neenu, G.; Gurubasavaraj, V.P. Design, synthesis and antitubercular evaluation of new benzimidazole scaffolds. Antiinfect. Agents, 2020, 18(4), 375-383.
[51]
Bhatt, A.; Fujiwara, N.; Bhatt, K.; Gurcha, S.S.; Kremer, L.; Chen, B.; Chan, J.; Porcelli, S.A.; Kobayashi, K.; Besra, G.S.; Jacobs, W.R., Jr Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 2007, 104(12), 5157-5162.
[http://dx.doi.org/10.1073/pnas.0608654104] [PMID: 17360388]
[52]
Jayaraman, M.; Rajendra, S.K.; Ramadas, K. Structural insight into conformational dynamics of non-active site mutations in KasA: A Mycobacterium tuberculosis target protein. Gene, 2019, 720, 144082.
[http://dx.doi.org/10.1016/j.gene.2019.144082] [PMID: 31476406]
[53]
Alderwick, L.J.; Harrison, J.; Lloyd, G.S.; Birch, H.L. The Mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med., 2015, 5(8), a021113.
[http://dx.doi.org/10.1101/cshperspect.a021113] [PMID: 25818664]
[54]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[55]
Squeglia, F.; Ruggiero, A.; Berisio, R. Chemistry of peptidoglycan in Mycobacterium tuberculosis life cycle: An off-the-wall balance of synthesis and degradation. Chemistry, 2018, 24(11), 2533-2546.
[http://dx.doi.org/10.1002/chem.201702973] [PMID: 28925518]
[56]
Alderwick, L.J.; Dover, L.G.; Veerapen, N.; Gurcha, S.S.; Kremer, L.; Roper, D.L.; Pathak, A.K.; Reynolds, R.C.; Besra, G.S. Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expr. Purif., 2008, 58(2), 332-341.
[http://dx.doi.org/10.1016/j.pep.2007.11.012] [PMID: 18248822]
[57]
Mills, J.A.; Motichka, K.; Jucker, M.; Wu, H.P.; Uhlik, B.C.; Stern, R.J.; Scherman, M.S.; Vissa, V.D.; Pan, F.; Kundu, M.; Ma, Y.F.; McNeil, M. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J. Biol. Chem., 2004, 279(42), 43540-43546.
[http://dx.doi.org/10.1074/jbc.M407782200] [PMID: 15294902]
[58]
McNeil, M.; Daffe, M.; Brennan, P.J. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J. Biol. Chem., 1990, 265(30), 18200-18206.
[http://dx.doi.org/10.1016/S0021-9258(17)44738-7] [PMID: 2211696]
[59]
Dianišková, P.; Korduláková, J.; Skovierová, H.; Kaur, D.; Jackson, M.; Brennan, P.J.; Mikušová, K. Investigation of ABC transporter from mycobacterial arabinogalactan biosynthetic cluster. Gen. Physiol. Biophys., 2011, 30(3), 239-250.
[http://dx.doi.org/10.4149/gpb_2011_03_239] [PMID: 21952433]
[60]
Alderwick, L.J.; Lloyd, G.S.; Lloyd, A.J.; Lovering, A.L.; Eggeling, L.; Besra, G.S. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology, 2011, 21(4), 410-425.
[http://dx.doi.org/10.1093/glycob/cwq173] [PMID: 21045009]
[61]
Mikusová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; D’Haeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol., 2005, 187(23), 8020-8025.
[http://dx.doi.org/10.1128/JB.187.23.8020-8025.2005] [PMID: 16291675]
[62]
Escuyer, V.E.; Lety, M-A.; Torrelles, J.B.; Khoo, K-H.; Tang, J-B.; Rithner, C.D.; Frehel, C.; McNeil, M.R.; Brennan, P.J.; Chatterjee, D. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem., 2001, 276(52), 48854-48862.
[http://dx.doi.org/10.1074/jbc.M102272200] [PMID: 11677227]
[63]
McNeil, M.; Daffe, M.; Brennan, P.J. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J. Biol. Chem., 1991, 266(20), 13217-13223.
[http://dx.doi.org/10.1016/S0021-9258(18)98826-5] [PMID: 1906464]
[64]
Chikhale, R.V.; Barmade, M.A.; Murumkar, P.R.; Yadav, M.R. Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J. Med. Chem., 2018, 61(19), 8563-8593.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00281] [PMID: 29851474]
[65]
Miku.sovaKMakarovVNeresJ.DprE1 - from the discovery to the promising tuberculosis drug target. Curr. Pharm. Des., 2013, 20(27), 4379-4403.
[http://dx.doi.org/10.2174/138161282027140630122724]
[66]
Warrier, T.; Martinez-Hoyos, M.; Marin-Amieva, M.; Colmenarejo, G.; Porras-De Francisco, E.; Alvarez-Pedraglio, A.I.; Fraile Gabaldon, M.T.; Torres-Gomez, P.A.; Lopez-Quezada, L.; Gold, B.; Roberts, J.; Ling, Y.; Somersan-Karakaya, S.; Little, D.; Cammack, N.; Nathan, C.; Mendoza-Losana, A. Identification of novel anti-mycobacterial compounds by screening a pharmaceutical small-molecule library against nonreplicating Mycobacterium tuberculosis. ACS Infect. Dis., 2015, 1(12), 580-585.
[http://dx.doi.org/10.1021/acsinfecdis.5b00025] [PMID: 27623055]
[67]
Warrier, T.; Kapilashrami, K.; Argyrou, A.; Ioerger, T.R.; Little, D.; Murphy, K.C.; Nandakumar, M.; Park, S.; Gold, B.; Mi, J.; Zhang, T.; Meiler, E.; Rees, M.; Somersan-Karakaya, S.; Porras-De Francisco, E.; Martinez-Hoyos, M.; Burns-Huang, K.; Roberts, J.; Ling, Y.; Rhee, K.Y.; Mendoza-Losana, A.; Luo, M.; Nathan, C.F. N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2016, 113(31), E4523-E4530.
[http://dx.doi.org/10.1073/pnas.1606590113] [PMID: 27432954]
[68]
R, M.M.; Shandil, R.; Panda, M.; Sadler, C.; Ambady, A.; Panduga, V.; Kumar, N.; Mahadevaswamy, J.; Sreenivasaiah, M.; Narayan, A.; Guptha, S.; Sharma, S.; Sambandamurthy, V.K.; Ramachandran, V.; Mallya, M.; Cooper, C.; Mdluli, K.; Butler, S.; Tommasi, R.; Iyer, P.S.; Narayanan, S.; Chatterji, M.; Shirude, P.S. Scaffold morphing to identify novel DprE1 inhibitors with antimycobacterial activity. ACS Med. Chem. Lett., 2019, 10(10), 1480-1485.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00343] [PMID: 31620237]
[69]
Kurosu, M. Discovery of WecA inhibitors for development of new TB drugs for dormant Mycobacterium tuberculosis infections. J. Gly., 2016, 4(2), 76.
[70]
Jin, Y.; Xin, Y.; Zhang, W.; Ma, Y. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis. FEMS Microbiol. Lett., 2010, 310(1), 54-61.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02045.x] [PMID: 20637039]
[71]
Jagtap, P.K.A.; Verma, S.K.; Vithani, N.; Bais, V.S.; Prakash, B. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: Its significance to sugar nucleotidyl transferases. J. Mol. Biol., 2013, 425(10), 1745-1759.
[http://dx.doi.org/10.1016/j.jmb.2013.02.019] [PMID: 23485416]
[72]
Kim, D.H.; Lees, W.J.; Kempsell, K.E.; Lane, W.S.; Duncan, K.; Walsh, C.T. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry, 1996, 35(15), 4923-4928.
[http://dx.doi.org/10.1021/bi952937w] [PMID: 8664284]
[73]
Kumar, V.; Saravanan, P.; Arvind, A.; Mohan, C.G. Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. J. Mol. Model., 2011, 17(5), 939-953.
[http://dx.doi.org/10.1007/s00894-010-0788-3] [PMID: 20614148]
[74]
Kumar, P.; Kaushik, A.; Lloyd, E.P.; Li, S-G.; Mattoo, R.; Ammerman, N.C.; Bell, D.T.; Perryman, A.L.; Zandi, T.A.; Ekins, S.; Ginell, S.L.; Townsend, C.A.; Freundlich, J.S.; Lamichhane, G. Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol., 2017, 13(1), 54-61.
[http://dx.doi.org/10.1038/nchembio.2237] [PMID: 27820797]
[75]
Raymond, J.B.; Mahapatra, S.; Crick, D.C.; Pavelka, M.S., Jr Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem., 2005, 280(1), 326-333.
[http://dx.doi.org/10.1074/jbc.M411006200] [PMID: 15522883]
[76]
Falk, P.J.; Ervin, K.M.; Volk, K.S.; Ho, H.T. Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate: L-alanine ligase-catalyzed reaction. Biochemistry, 1996, 35(5), 1417-1422.
[http://dx.doi.org/10.1021/bi952078b] [PMID: 8634271]
[77]
Kurosu, M.; Mahapatra, S.; Narayanasamy, P.; Crick, D.C. Chemoenzymatic synthesis of Park’s nucleotide: Toward the development of high-throughput screening for MraY inhibitors. Tetrahedron Lett., 2007, 48(5), 799-803.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.160]
[78]
Dini, C. MraY inhibitors as novel antibacterial agents. Curr. Top. Med. Chem., 2005, 5(13), 1221-1236.
[http://dx.doi.org/10.2174/156802605774463042] [PMID: 16305528]
[79]
Kim, H.S.; Kim, J.; Im, H.N.; Yoon, J.Y.; An, D.R.; Yoon, H.J.; Kim, J.Y.; Min, H.K.; Kim, S.J.; Lee, J.Y.; Han, B.W.; Suh, S.W. Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 3), 420-431.
[http://dx.doi.org/10.1107/S0907444912048998] [PMID: 23519417]
[80]
Erdemli, S.B.; Gupta, R.; Bishai, W.R.; Lamichhane, G.; Amzel, L.M.; Bianchet, M.A. Targeting the cell wall of Mycobacterium tuberculosis: Structure and mechanism of L,D-transpeptidase 2. Structure, 2012, 20(12), 2103-2115.
[http://dx.doi.org/10.1016/j.str.2012.09.016] [PMID: 23103390]
[81]
Gupta, R.; Lavollay, M.; Mainardi, J-L.; Arthur, M.; Bishai, W.R.; Lamichhane, G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med., 2010, 16(4), 466-469.
[http://dx.doi.org/10.1038/nm.2120] [PMID: 20305661]