Combinatorial Chemistry & High Throughput Screening

Author(s): Tong-Meng Jiang*

DOI: 10.2174/1386207325666220412134311

Unveiling the Time Course Mechanism of Bone Fracture Healing by Transcriptional Profiles

Page: [149 - 162] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Bone fracture healing is a time-consuming and high-priority orthopedic problem worldwide.

Objective: Discovering the potential mechanism of bone healing at a time course and transcriptional level may better help manage bone fracture.

Methods: In this study, we analyze a time-course bone fracture healing transcriptional dataset in a rat model (GSE592, GSE594, and GSE1371) of Gene Expression Omnibus (GEO). RNA was obtained from female Sprague-Dawley rats with a femoral fracture at the initial time (day 3) as well as early (week 1), middle (week 2), and late (week 4) time periods, with nonfracture rats used as control. Gene Ontology (GO) functional analysis and pathway examinations were performed for further measurements of GSEA and hub genes.

Results: Results indicated that the four stages of bone fracture healing at the initial, early, middle, and late time periods represent the phases of hematoma formation, callus formation, callus molding, and mature lamellar bone formation, respectively. Extracellular organization was positively employed throughout the four stages. At the hematoma formation phase, the muscle contraction process was downregulated. Antibacterial peptide pathway was downregulated at all phases. The upregulation of Fn1 (initial, early, middle, and late time periods), Col3a1 (initial, early, and middle time periods), Col11a1 (initial and early time periods), Mmp9 (middle and late time periods), Mmp13 (early, middle, and late time periods) and the downregulation of RatNP-3b (initial, early, middle, and late time periods) were possible symbols for bone fracture healing and may be used as therapeutic targets.

Conclusion: These findings suggest some new potential pathways and genes in the process of bone fracture healing and further provide insights that can be used in targeted molecular therapy for bone fracture healing.

Keywords: Bone fracture healing, hematoma formation, callus formation, callus molding, mature lamellar bone formation, bioinformatics.

Graphical Abstract

[1]
Corso, P.; Finkelstein, E.; Miller, T.; Fiebelkorn, I.; Zalosh-nja, E. Incidence and lifetime costs of injuries in the United States. American J. Preventive Med., 2015, 21(6), 434-440.
[2]
Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mecha-nisms and interventions. Nat. Rev. Rheumatol., 2015, 11(1), 45-54.
[http://dx.doi.org/10.1038/nrrheum.2014.164] [PMID: 25266456]
[3]
Mizuno, K.; Mineo, K.; Tachibana, T.; Sumi, M.; Matsubara, T.; Hirohata, K. The osteogenetic potential of fracture haema-toma. Subperiosteal and intramuscular transplantation of the haematoma. J. Bone Joint Surg. Br., 1990, 72(5), 822-829.
[http://dx.doi.org/10.1302/0301-620X.72B5.2211764] [PMID: 2211764]
[4]
Gerstenfeld, L.C.; Cho, T.J.; Kon, T.; Aizawa, T.; Tsay, A.; Fitch, J.; Barnes, G.L.; Graves, D.T.; Einhorn, T.A. Impaired fracture healing in the absence of TNF-alpha signaling: The role of TNF-alpha in endochondral cartilage resorption. J. Bone Miner. Res., 2003, 18(9), 1584-1592.
[5]
Kolar, P.; Gaber, T.; Perka, C.; Duda, G.N.; Buttgereit, F. Human early fracture hematoma is characterized by inflam-mation and hypoxia. Clin. Orthop. Relat. Res., 2011, 469(11), 3118-3126.
[http://dx.doi.org/10.1007/s11999-011-1865-3] [PMID: 21409457]
[6]
Bahney, C.S.; Zondervan, R.L.; Allison, P.; Theologis, A.; Ashley, J.W.; Ahn, J.; Miclau, T.; Marcucio, R.S.; Hankenson, K.D. Cellular biology of fracture healing. J. Orthop. Res., 2019, 37(1), 35-50.
[7]
Santos, M.I.; Reis, R.L. Vascularization in bone tissue engi-neering: Physiology, current strategies, major hurdles and fu-ture challenges. Macromol. Biosci., 2010, 10(1), 12-27.
[http://dx.doi.org/10.1002/mabi.200900107] [PMID: 19688722]
[8]
Feng, X. RANKing intracellular signaling in osteoclasts. IUBMB Life, 2005, 57(6), 389-395.
[http://dx.doi.org/10.1080/15216540500137669] [PMID: 16012047]
[9]
Teitelbaum, S.L. Osteoclasts: What do they do and how do they do it? Am. J. Pathol., 2007, 170(2), 427-435.
[http://dx.doi.org/10.2353/ajpath.2007.060834] [PMID: 17255310]
[10]
Gerstenfeld, L.C.; Thiede, M.; Seibert, K.; Mielke, C.; Phip-pard, D.; Svagr, B.; Cullinane, D.; Einhorn, T.A. Differential inhibition of fracture healing by non-selective and cyclooxy-genase-2 selective non-steroidal anti-inflammatory drugs. J. Orthop. Res., 2003, 21(4), 670-675.
[11]
Gerstenfeld, L.C.; Cho, T.J.; Kon, T.; Aizawa, T.; Cruceta, J.; Graves, B.D.; Einhorn, T.A. Impaired intramembranous bone formation during bone repair in the absence of tumor necro-sis factor-alpha signaling. Cells Tissues Organs, 2001, 169(3), 285-294.
[http://dx.doi.org/10.1159/000047893] [PMID: 11455125]
[12]
Lu, L.Y.; Loi, F.; Nathan, K.; Lin, T.H.; Pajarinen, J.; Gibon, E.; Nabeshima, A.; Cordova, L.; Jamsen, E.; Yao, Z.; Good-man, S.B. Pro-inflammatory M1 macrophages promote Oste-ogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J. Orthop. Res., 2017, 35(11), 2378-2385.
[13]
Alblowi, J.; Kayal, R.A.; Siqueira, M.; McKenzie, E.; Krotha-palli, N.; McLean, J.; Conn, J.; Nikolajczyk, B.; Einhorn, T.A.; Gerstenfeld, L.; Graves, D.T. High levels of tumor ne-crosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am. J. Pathol., 2009, 175(4), 1574-1585.
[http://dx.doi.org/10.2353/ajpath.2009.090148] [PMID: 19745063]
[14]
Blakytny, R.; Laumen, S.; Ignatius, A.; Gebhard, F.; Claes, L.; Krischak, G. Multiple roles for interleukin-6 (il-6) in fracture healing. Orthop. Proc., 2009, 91-B(Suppl. III), 472-472.
[15]
Lim, J.C.; Ko, K.I.; Mattos, M.; Fang, M.; Zhang, C.; Fein-berg, D.; Sindi, H.; Li, S.; Alblowi, J.; Kayal, R.A.; Einhorn, T.A.; Gerstenfeld, L.C.; Graves, D.T. TNFα contributes to di-abetes impaired angiogenesis in fracture healing. Bone, 2017, 99, 26-38.
[http://dx.doi.org/10.1016/j.bone.2017.02.014] [PMID: 28285015]
[16]
Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res., 2009, 24(2), 274-282.
[17]
Street, J.; Bao, M.; deGuzman, L.; Bunting, S.; Peale, F.V., Jr; Ferrara, N.; Steinmetz, H.; Hoeffel, J.; Cleland, J.L.; Daugh-erty, A.; van Bruggen, N.; Redmond, H.P.; Carano, R.A.; Fil-varoff, E.H. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA, 2002, 99(15), 9656-9661.
[http://dx.doi.org/10.1073/pnas.152324099] [PMID: 12118119]
[18]
Jacobsen, K.A.; Al-Aql, Z.S.; Wan, C.; Fitch, J.L.; Stapleton, S.N.; Mason, Z.D.; Cole, R.M.; Gilbert, S.R.; Clemens, T.L.; Morgan, E.F.; Einhorn, T.A.; Gerstenfeld, L.C. Bone for-mation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J. Bone Miner. Res., 2008, 23(5), 596-609.
[19]
Meyer, M.H.; Etienne, W.; Meyer, R.A. Jr Altered mRNA expression of genes related to nerve cell activity in the frac-ture callus of older rats: A randomized, controlled, microar-ray study. BMC Musculoskelet. Disord., 2004, 5, 24.
[http://dx.doi.org/10.1186/1471-2474-5-24] [PMID: 15291962]
[20]
Meyer, M.H.; Meyer, R.A., Jr Genes with greater up-regulation in the fracture callus of older rats with delayed healing. J. Bone Miner. Res., 2007, 25(4), 488-494.
[21]
Bonnarens, F.; Einhorn, T.A. Production of a standard closed fracture in laboratory animal bone. J. Bone Mineral Res. Society, 1984, 2(1), 97-101.
[22]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[23]
Wang, J.; Vasaikar, S.; Shi, Z.; Greer, M.; Zhang, B. WebGe-stalt 2017: A more comprehensive, powerful, flexible and in-teractive gene set enrichment analysis toolkit. Nucleic Acids Res., 2017, 45(W1), W130-W137.
[http://dx.doi.org/10.1093/nar/gkx356] [PMID: 28472511]
[24]
Ge, S.X.; Son, E.W.; Yao, R. iDEP: An integrated web appli-cation for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics, 2018, 19(1), 534.
[http://dx.doi.org/10.1186/s12859-018-2486-6] [PMID: 30567491]
[25]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[26]
Guo, G.; Gou, Y.; Jiang, X.; Wang, S.; Wang, R.; Liang, C.; Yang, G.; Wang, T.; Yu, A.; Zhu, G. Long non-coding RNAs in traumatic brain injury accelerated fracture healing. Front. Surg., 2021, 8, 663377.
[http://dx.doi.org/10.3389/fsurg.2021.663377] [PMID: 34150839]
[27]
Grundnes, O.; Reikerås, O. The importance of the hematoma for fracture healing in rats. Acta Orthop. Scand., 1993, 64(3), 340-342.
[http://dx.doi.org/10.3109/17453679308993640] [PMID: 8322595]
[28]
Meyer, R.A., Jr; Desai, B.R.; Heiner, D.E.; Fiechtl, J.; Porter, S.; Meyer, M.H. Young, adult, and old rats have similar changes in mRNA expression of many skeletal genes after fracture despite delayed healing with age. J. Bone Miner. Res., 2006, 24(10), 1933-1944.
[29]
Kernek, C.B.; Wray, J.B. Cellular proliferation in the for-mation of fracture callus in the rat tibia. Clin. Orthop. Relat. Res., 1973, (91), 197-209.
[http://dx.doi.org/10.1097/00003086-197303000-00028] [PMID: 4703149]
[30]
Owen, M. The origin of bone cells in the postnatal organism. Arthritis Rheum., 1980, 23(10), 1073-1080.
[http://dx.doi.org/10.1002/art.1780231002] [PMID: 7000078]
[31]
Sivaraj, K.K.; Jeong, H.W.; Dharmalingam, B.; Zeuschner, D.; Adams, S.; Potente, M.; Adams, R.H. Regional specialization and fate specification of bone stromal cells in skeletal devel-opment. Cell Rep., 2021, 36(2), 109352.
[http://dx.doi.org/10.1016/j.celrep.2021.109352] [PMID: 34260921]
[32]
Xiao, W.; Le, Q.; Zhu, D.; Dighe, A.; Cui, Q.; Yang, X. Asso-ciation of Fpr1 gene expression with osteogenesis and adipo-genesis of adipose derived stem cells. Biochem. Biophys. Res. Commun., 2021, 574, 33-38.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.044] [PMID: 34428707]
[33]
Bastian, O.W.; Koenderman, L.; Alblas, J.; Leenen, L.P.; Blokhuis, T.J. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after in-jury. Clin. Immunol., 2016, 164, 78-84.
[http://dx.doi.org/10.1016/j.clim.2016.02.001] [PMID: 26854617]
[34]
Volk, S.W.; Shah, S.R.; Cohen, A.J.; Wang, Y.; Brisson, B.K.; Vogel, L.K.; Hankenson, K.D.; Adams, S.L. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif. Tissue Int., 2014, 94(6), 621-631.
[http://dx.doi.org/10.1007/s00223-014-9843-x] [PMID: 24626604]
[35]
Hafez, A.; Squires, R.; Pedracini, A.; Joshi, A.; Seegmiller, R.E.; Oxford, J.T. Col11a1 regulates bone microarchitecture during embryonic development. J. Dev. Biol., 2015, 3(4), 158-176.
[http://dx.doi.org/10.3390/jdb3040158] [PMID: 26779434]
[36]
Eriksson, C.; Nygren, H.; Ohlson, K. Implantation of hydro-philic and hydrophobic titanium discs in rat tibia: Cellular re-actions on the surfaces during the first 3 weeks in bone. Biomaterials, 2004, 25(19), 4759-4766.
[http://dx.doi.org/10.1016/j.biomaterials.2003.12.006] [PMID: 15120522]
[37]
Kokubu, T.; Hak, D.J.; Hazelwood, S.J.; Reddi, A.H. Devel-opment of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J. Bone Miner. Res., 2003, 21(3), 503-510.
[38]
Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q. Roles of chondro-cytes in endochondral bone formation and fracture repair. J. Dent. Res., 2017, 96(1), 23-30.
[http://dx.doi.org/10.1177/0022034516668321] [PMID: 27664203]
[39]
Svandova, E.; Vesela, B.; Lesot, H.; Sadoine, J.; Poliard, A.; Matalova, E.; Fas, L. Modulates expression of Mmp2 in oste-oblasts. Front. Physiol., 2018, 9, 1314.
[http://dx.doi.org/10.3389/fphys.2018.01314] [PMID: 30283358]
[40]
Zhang, Y.; Huang, H.; Zhao, G.; Yokoyama, T.; Vega, H.; Huang, Y.; Sood, R.; Bishop, K.; Maduro, V.; Accardi, J.; To-ro, C.; Boerkoel, C.F.; Lyons, K.; Gahl, W.A.; Duan, X.; Malicdan, M.C.; Lin, S. ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet., 2017, 13(2), e1006481.
[http://dx.doi.org/10.1371/journal.pgen.1006481] [PMID: 28158191]
[41]
Surlin, P.; Silosi, I.; Rauten, A.M.; Cojocaru, M.; Foia, L. Involvement of TSP1 and MMP9/NGAL in angiogenesis dur-ing orthodontic periodontal remodeling. ScientificWorldJ., 2014, 2014, 421029.
[http://dx.doi.org/10.1155/2014/421029] [PMID: 24967433]
[42]
Gao, F.; Sun, M.; Gong, Y.; Wang, H.; Wang, Y.; Hou, H. MicroRNA-195a-3p inhibits angiogenesis by targeting Mmp2 in murine mesenchymal stem cells. Mol. Reprod. Dev., 2016, 83(5), 413-423.
[http://dx.doi.org/10.1002/mrd.22638] [PMID: 26989874]
[43]
Amundson, L.A.; Hernandez, L.L.; Crenshaw, T.D. Gene expression of matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 13 (MMP13), vascular endothelial growth factor (VEGF) and fibroblast growth factor 23 (FGF23) in femur and vertebra tissues of the hypovitaminosis D kyphot-ic pig model. Br. J. Nutr., 2018, 120(4), 404-414.
[http://dx.doi.org/10.1017/S0007114518001605] [PMID: 29991364]
[44]
Camacho, L.; Silva, C.S.; Hanig, J.P.; Schleimer, R.P.; George, N.I.; Bowyer, J.F. Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune func-tion resulting from amphetamine exposure or heat stroke in adult male rats. PLoS One, 2019, 14(2), e0210273.
[http://dx.doi.org/10.1371/journal.pone.0210273] [PMID: 30779732]
[45]
Giordano, V.; Giordano, M.; Knackfuss, I.G.; Apfel, M.I.; Gomes, R.D. Effect of tenoxicam on fracture healing in rat tibiae. Injury, 2003, 34(2), 85-94.
[http://dx.doi.org/10.1016/S0020-1383(02)00199-7] [PMID: 12565014]
[46]
Kim, S.Y.; Kim, S.G.; Lim, S.C.; Bae, C.S. Effects on bone formation in ovariectomized rats after implantation of tooth ash and plaster of Paris mixture. J. Oral Maxillofac. Surg., 2004, 62(7), 852-857.