Pyrazole Scaffolds: Centrality in Anti-Inflammatory and Antiviral Drug Design

Page: [1060 - 1072] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Pyrazole is a component of a diversity of bioactive heterocyclic congeners with a broad-spectrum range of biological and pharmacological uses. Designing novel pyrazole and its analogues, revealing new routes for synthesizing this nucleus, exploring various potencies of that heterocycles, and looking for possible applications of pyrazoles are all becoming more important due to their numerous potential applications.

Objectives: Pyrazole scaffolds have been proven to be successful as anti-viral and anti-inflammatory therapeutics against multiple targets like HSV-1, NNRTI, H1N1, CoX-1, and CoX-2. Due to this miscellany in the biotic area, this moiety has engrossed the consideration of many scientists to study chemistry and pharmacological profile.

Results: The review encompasses pyrazole having various scaffolds with multiple biological activities and attempts have also been made to correlate their structure-activity relationship. Multiple pyrazole correspondents have been synthesized as lead molecules and performed valuation for their actions.

Conclusion: The incorporation of pyrazole with other pharmacophores in the molecule might lead to novel potent therapeutic agents that will further help in designing potent lead molecules.

Keywords: Heterocyclic nucleus, pyrazole, antiviral, anti-inflammatory action, non-nucleoside reverse transcriptase inhibitors, cyclooxgenase-1, cyclooxgenase-2.

Graphical Abstract

[1]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[2]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[3]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[4]
Zárate-Zárate, D.; Aguilar, R.; Hernández-Benitez, R.I.; Labarrios, E.M.; Delgado Fand Tamariz, J. Synthesis of α-ketols by functionaliza-tion of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[5]
Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.A.; Gordon, M.A. Gallop applications of combinatorial technologies to drug discov-ery. 1. Background and peptide combinatorial libraries. J. Med. Chem. (N.Y.), 1994, 37, 1385.
[http://dx.doi.org/10.1021/jm00036a001]
[6]
Ardiansah, B. Recent reports on pyrazole-based bioactive compounds as candidate for anticancer agents. Asian J. Pharm. Clin. Res., 2017, 12(12), 45.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.22065]
[7]
Srivastava, M.; Singh, J.; Singh, S.B.; Tiwari, K.; Pathak, K.V.; Singh, J. Synthesis of novel fused heterocycle-oxa-aza-phenanthrene and anthracene derivatives via sequential one-pot synthesis in aqueous micellar system. Green Chem., 2012, 14(4), 901.
[http://dx.doi.org/10.1039/c2gc16425f]
[8]
Pai, G.; Chattopadhyay, A.P. N-arylation of nitrogen containing heterocycles with aryl halides using copper nanoparticle catalytic system. Tetrahedron Lett., 2016, 57(29), 3140-3145.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.019]
[9]
Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774]
[10]
Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Alilarik, F. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 2019, 131(8), 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[11]
Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Brullo, C.; Fossa, P.; Mosti, L.; Menozzi, G.; Carraro, F.; Naldini, A.; Bernini, C.; Manetti, F.; Botta, M. New pyrazolo[3,4-d]pyrimidines endowed with A431 antiproliferative activity and inhibitory properties of Src phosphorylation. Bioorg. Med. Chem. Lett., 2004, 14(10), 2511-2517.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.013] [PMID: 15109642]
[12]
Daidone, G.; Raffa, D.; Maggio, B.; Valeria Raimondi, M.; Plescia, F.; Schillaci, D. Synthesis and antiproliferative activity of tri-azenoindazoles and triazenopyrazoles: A comparative study. Eur. J. Med. Chem., 2004, 39(3), 219-224.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.012] [PMID: 15051169]
[13]
Baraldi, P.G.; Beria, I.; Cozzi, P.; Bianchi, N.; Gambari, R.; Romagnoli, R. Bioorg, synthesis and growth inhibition activity of alpha- bro-moacrylic heterocyclic and benzo-heterocyclic derivatives of distamycin A modified on the amidino moiety. Med. Chem. (N.Y.), 2003, 11, 965.
[PMID: 12614881]
[14]
Bekhit, A.A.; Hymete, A. El-Din ABekhit, A; Damtew, A; Aboul-Enein, HY Pyrazole as promising scaffold for the synthesis of anti-inflammatory and/or anti-microbial agent: A review. Mini Rev. Med. Chem., 2010, 10, 1014.
[http://dx.doi.org/10.2174/1389557511009011014] [PMID: 20540709]
[15]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial ade-nomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[16]
Uslaner, J.M.; Parmentier-Batteur, S.; Flick, R.B.; Surles, N.O.; Lam, J.S.; McNaughton, C.H.; Jacobson, M.A.; Hutson, P.H. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phos-phorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 2009, 57(5-6), 531-538.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.022] [PMID: 19627999]
[17]
Kameyama, T.; Nabeshima, T. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance response. Neuropharmacology, 1978, 17(4-5), 249-256.
[http://dx.doi.org/10.1016/0028-3908(78)90108-9] [PMID: 652137]
[18]
Singh Jadav, S.; Nayan Sinha, B.; Pastorino, B.; de Lamballerie, X.; Hilgenfeld, R.; Jayaprakash, V. Identification of pyrazole derivative as an antiviral agent against Chikungunya through HTVS. Lett. Drug Des. Discov., 2015, 12(4), 292-301.
[http://dx.doi.org/10.2174/1570180811666141001005402]
[19]
el-Sabbagh, O.I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A.A. Synthesis and antivi-ral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44(9), 3746-3753.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.038] [PMID: 19419804]
[20]
Pancic, F.; Steinberg, B.A.; Diana, G.D.; Carabateas, P.M.; Gorman, W.G.; Came, P.E. Antiviral activity of Win 41258-3, a pyrazole com-pound, against herpes simplex virus in mouse genital infection and in guinea pig skin infection. Antimicrob. Agents Chemother., 1981, 19(3), 470-476.
[http://dx.doi.org/10.1128/AAC.19.3.470] [PMID: 7247370]
[21]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Fathalla, N.; Abdel-Megeid, F.M. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem., 2009, 44(8), 3285-3292.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.012] [PMID: 19285757]
[22]
Shih, S.R.; Chu, T.Y.; Reddy, G.R.; Tseng, S.N.; Chen, H.L.; Tang, W.F.; Wu, M.S.; Yeh, J.Y.; Chao, Y.S.; Hsu, J.T.; Hsieh, H.P.; Horng, J.T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci., 2010, 17(1), 13.
[http://dx.doi.org/10.1186/1423-0127-17-13] [PMID: 20178582]
[23]
Su, D.S.; Lim, J.J.; Tinney, E.; Wan, B.L.; Young, M.B.; Anderson, K.D.; Rudd, D.; Munshi, V.; Bahnck, C.; Felock, P.J.; Lu, M.; Lai, M.T.; Touch, S.; Moyer, G.; DiStefano, D.J.; Flynn, J.A.; Liang, Y.; Sanchez, R.; Perlow-Poehnelt, R.; Miller, M.; Vacca, J.P.; Williams, T.M.; Anthony, N.J. Biaryl ethers as novel non-nucleoside reverse transcriptase inhibitors with improved potency against key mutant vi-ruses. J. Med. Chem., 2009, 52(22), 7163-7169.
[http://dx.doi.org/10.1021/jm901230r] [PMID: 19883100]
[24]
Su, D.S.; Lim, J.J.; Tinney, E.; Tucker, T.J.; Saggar, S.; Sisko, J.T.; Wan, B.L.; Young, M.B.; Anderson, K.D.; Rudd, D.; Munshi, V.; Bahnck, C.; Felock, P.J.; Lu, M.; Lai, M.T.; Touch, S.; Moyer, G.; Distefano, D.J.; Flynn, J.A.; Liang, Y.; Sanchez, R.; Perlow-Poehnelt, R.; Miller, M.; Vacca, J.P.; Williams, T.M.; Anthony, N.J. Biaryl ethers as potent allosteric inhibitors of reverse transcriptase and its key mu-tant viruses: Aryl substituted pyrazole as a surrogate for the pyrazolopyridine motif. Bioorg. Med. Chem. Lett., 2010, 20(15), 4328-4332.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.083] [PMID: 20609585]
[25]
Mowbray, C.E.; Burt, C.; Corbau, R.; Perros, M.; Tran, I.; Stupple, P.A.; Webster, R.; Wood, A. Pyrazole NNRTIs 1: Design and initial optimisation of a novel template. Bioorg. Med. Chem. Lett., 2009, 19(19), 5599-5602.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.039] [PMID: 19709880]
[26]
Mowbray, C.E.; Corbau, R.; Hawes, M.; Jones, L.H.; Mills, J.E.; Perros, M.; Selby, M.D.; Stupple, P.A.; Webster, R.; Wood, A. Pyrazole NNRTIs 3: Optimisation of physicochemical properties. Bioorg. Med. Chem. Lett., 2009, 19(19), 5603-5606.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.043] [PMID: 19717303]
[27]
Mowbray, C.E.; Burt, C.; Corbau, R.; Gayton, S.; Hawes, M.; Perros, M.; Tran, I.; Price, D.A.; Quinton, F.J.; Selby, M.D.; Stupple, P.A.; Webster, R.; Wood, A. CE, M Pyrazole NNRTIs 4: Selection of UK-453,061 (lersivirine) as a development candidate. Bioorg. Med. Chem. Lett., 2009, 19(20), 5857-5860.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.080] [PMID: 19748778]
[28]
Sujatha, K.; Shanthi, G.; Selvam, N.P.; Manoharan, S.; Perumal, P.T.; Rajendran, M. Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg. Med. Chem. Lett., 2009, 19(15), 4501-4503.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.113] [PMID: 19482473]
[29]
Sweeney, Z.K.; Harris, S.F.; Arora, S.F.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.K.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villaseñor, A.G.; Paul, A.; Su, G.; Heil-ek, G.; Hang, J.Q.; Zhou, A.S.; Jernelius, J.A.; Zhang, F.J.; Klumpp, K. Design of annulated pyrazoles as inhibitors of HIV-1 reverse tran-scriptase. J. Med. Chem., 2008, 51(23), 7449-7458.
[http://dx.doi.org/10.1021/jm800527x] [PMID: 19007201]
[30]
Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem., 2008, 51(15), 4660-4671.
[http://dx.doi.org/10.1021/jm800412d] [PMID: 18610998]
[31]
Ouyang, G.; Cai, X.J.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activi-ties of pyrazole derivatives containing an oxime moiety. J. Agric. Food Chem., 2008, 56(21), 10160-10167.
[http://dx.doi.org/10.1021/jf802489e] [PMID: 18939848]
[32]
Kohli, P.; Steg, P.G.; Cannon, C.P.; Smith, S.C., Jr; Eagle, K.A.; Ohman, E.M.; Alberts, M.J.; Hoffman, E.; Guo, J.; Simon, T.; Sorbets, E.; Goto, S.; Bhatt, D.L. REACH Registry Investigators. NSAID use and association with cardiovascular outcomes in outpatients with stable atherothrombotic disease. Am. J. Med., 2014, 127(1), 53-60.e1.
[http://dx.doi.org/10.1016/j.amjmed.2013.08.017] [PMID: 24280110]
[33]
El-Sehemi, A.G.; Bondock, S.; Ammar, Y.A. Transformations of naproxen into pyrazolecarboxamides: Search for potent anti-inflammatory, analgesic and ulcerogenic agents. Med. Chem. Res., 2014, 23(2), 827-838.
[http://dx.doi.org/10.1007/s00044-013-0650-0]
[34]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: De-sign, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[35]
Kumar, P.; Chandak, N.; Kaushik, P.; Sharma, C.; Kaushik, D.; Aneja, K.R.; Sharma, P.K. Benzenesulfonamide bearing pyrazolylpyra-zolines: Synthesis and evaluation as anti-inflammatory–antimicrobial agents. Med. Chem. Res., 2014, 23(2), 882-895.
[http://dx.doi.org/10.1007/s00044-013-0679-0]
[36]
Mohammed, K.O.; Nissan, Y.M. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole deriva-tives as anti-inflammatory agents. Chem. Biol. Drug Des., 2014, 84(4), 473-488.
[http://dx.doi.org/10.1111/cbdd.12336] [PMID: 24720475]
[37]
Murphy, R.C.; Hammarström, S.; Samuelsson, B.; Leukotriene, C.; Leukotriene, C. A slow-reacting substance from murine mastocytoma cells. Proc. Natl. Acad. Sci. USA, 1979, 76(9), 4275-4279.
[http://dx.doi.org/10.1073/pnas.76.9.4275] [PMID: 41240]
[38]
Feng, Z.; Chu, F.; Guo, Z.; Sun, P. Synthesis and anti-inflammatory activity of the major metabolites of imrecoxib. Bioorg. Med. Chem. Lett., 2009, 19(8), 2270-2272.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.090] [PMID: 19286379]
[39]
Sakya, S.M.; Hou, X.; Minich, M.L.; Rast, B.; Shavnya, A.; DeMello, K.M.; Cheng, H.; Li, J.; Jaynes, B.H.; Mann, D.W.; Petras, C.F.; Seibel, S.B.; Haven, M.L. 5-Heteroatom substituted pyrazoles as canine COX-2 inhibitors. Part III: Molecular modeling studies on binding contribution of 1-(5-methylsulfonyl)pyrid-2-yl and 4-nitrile. Bioorg. Med. Chem. Lett., 2007, 17(4), 1067-1072.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.026] [PMID: 17126015]
[40]
Sing, G.; Chandra, P.; Sachan, N. Chemistry and pharmacological activities of pyrazole and pyrazole derivatives: A review. Int. J. Pharm. Sci. Rev. Res., 2020, 65(1), 201-214.
[http://dx.doi.org/10.47583/ijpsrr.2020.v65i01.030]
[41]
Turones, L.C.; Martins, A.N.; Moreira, L.K.D.S.; Fajemiroye, J.O.; Costa, E.A. Development of pyrazole derivatives in the management of inflammation. Fundam. Clin. Pharmacol., 2021, 35(2), 217-234.
[http://dx.doi.org/10.1111/fcp.12629] [PMID: 33171533]
[42]
El-Sayed, M.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.; El-Azab, A.S.; Asiri, Y.A.; Eltahir, K.E. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg. Med. Chem., 2011, 19(11), 3416-3424.
[http://dx.doi.org/10.1016/j.bmc.2011.04.027] [PMID: 21570309]
[43]
Abd-El Gawad, N.M.; Hassan, G.S.; Georgey, H.H. Design and synthesis of some pyrazole derivatives of expected anti-inflammatory and analgesic activities. Med. Chem. Res., 2012, 21(7), 983-994.
[http://dx.doi.org/10.1007/s00044-011-9606-4]
[44]
Nagarapu, L.; Mateti, J.; Gaikwad, H.K.; Bantu, R.; Sheeba Rani, M.; Prameela Subhashini, N.J. Synthesis and anti-inflammatory activity of some novel 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives. Bioorg. Med. Chem. Lett., 2011, 21(14), 4138-4140.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.105] [PMID: 21689936]
[45]
Eren, G.; Unlü, S.; Nuñez, M.T.; Labeaga, L.; Ledo, F.; Entrena, A. Banoğlu, E.; Costantino, G.; Sahin, M.F. Synthesis, biological evalua-tion, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg. Med. Chem., 2010, 18(17), 6367-6376.
[http://dx.doi.org/10.1016/j.bmc.2010.07.009] [PMID: 20692174]
[46]
Shrivastava, P.; Singh, P.; Tewari, A.K. Synthesis of pyrazole-based 1,5-diaryl compounds as potent anti-inflammatory agents. Med. Chem. Res., 2012, 21(9), 2465-2475.
[http://dx.doi.org/10.1007/s00044-011-9774-2]
[47]
Nassar, E.; Abdel-Aziz, H.A.; Ibrahim, H.S.; Mansour, A.M. Synthesis of diarylpyrazoles containing a phenylsulphone or carbonitrile moiety and their chalcones as possible anti-inflammatory agents. Sci. Pharm., 2011, 79(3), 507-524.
[http://dx.doi.org/10.3797/scipharm.1105-14] [PMID: 21886900]
[48]
Mathew, A.; Sheeja, M.T.L.; Kumar, A.T.; Radha, K. Design, synthesis and biological evaluation of pyrazole analogues of natural piper-ine. J. Med., 2011, 3, 48.
[49]
Bhaskar, V.H.; Mohite, P.B. Synthesis analgesic, anti-inflammatory and antimicrobial activities of some 1-[5-(substituted phenyl)-4,5-dihydro1hpyrazol-3-yl]-5-phenyl-1h-tetrazole, J Optoelectronics. Biomed. Mater., 2011, 3, 7-16.
[50]
Sharma, P.K.; Kumar, S.; Kumar, P.; Kaushik, P.; Kaushik, D.; Dhingra, Y.; Aneja, K.R. Synthesis and biological evaluation of some pyra-zolylpyrazolines as anti-inflammatory-antimicrobial agents. Eur. J. Med. Chem., 2010, 45(6), 2650-2655.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.059] [PMID: 20171763]
[51]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.009] [PMID: 20149499]
[52]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[53]
Arunkumar, S.; Ilango, K.; Manikandan, R.S.; Ramalakshmi, N. Synthesis characterization and biological activities of some new quinazolines-4-one based derivatives. E-J. Chem., 2009, 6, S1-S123.
[54]
Sahu, S.K.; Banerjee, M.; Samantray, A.; Behera, C.; Azam, M.A. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. Trop. J. Pharm. Res., 2008, 7(2), 961.
[http://dx.doi.org/10.4314/tjpr.v7i2.14664]
[55]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizu, S.; Pérez-Silanes, S.; Aldana, I.; Monge, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett., 2007, 17(23), 6439-6443.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.002] [PMID: 17942306]
[56]
Selvam, C.; Jachak, S.M.; Thilagavathi, R.; Chakraborti, A.K. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2005, 15(7), 1793-1797.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.039] [PMID: 15780608]
[57]
Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem., 2004, 12(8), 1935-1945.
[http://dx.doi.org/10.1016/j.bmc.2004.01.037] [PMID: 15051061]
[58]
Abu-Melha, S.; Edrees, M.M.; Riyadh, S.M.; Abdelaziz, M.R.; Elfiky, A.A.; Gomha, S.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules, 2020, 25(19), 4565.
[http://dx.doi.org/10.3390/molecules25194565] [PMID: 33036293]
[59]
Mohamed, M.S.; Zohny, Y.M.; Senousy, W.M.E. Synthesis and biological screening of novel pyrazoles and their precursors as potential antiviral agents. Pharmacophore, 2018, 9(1), 126-139.
[60]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[61]
Amdare, M.D.; Jogdand, K.R.; Kathane, L.L.; Kuhite, N.G. Synthesis of a potential anti-inflammatory pyrazole derivative from hippuric acid as the starting material. JPCBS, 2017, 5(3), 216-220.
[62]
Mishra, S.; Patel, S.; Halpani, C.G. Recent updates in curcumin pyrazole and isoxazole derivatives: Synthesis and biological application. Chem. Biodivers., 2019, 16(2), e1800366.
[http://dx.doi.org/10.1002/cbdv.201800366] [PMID: 30460748]
[63]
Taher, A.T.; Mostafa Sarg, M.T.; El-Sayed Ali, N.R.; Hilmy Elnagdi, N. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Chem., 2019, 89, 103023.
[http://dx.doi.org/10.1016/j.bioorg.2019.103023] [PMID: 31185391]
[64]
Pandya, A.B.; Prajapati Dhabal, G.; Pandya, S.S. Synthesis of novel naphthalene COX inhibitors for anti-inflammatory activity. J. Appl. Pharm. Sci., 2012, 2(8), 226-232.
[http://dx.doi.org/10.7324/JAPS.2012.2840]
[65]
Tantawy, A.S.; Nasr, M.N.A.; El-Sayed, M.A.A.; Tawfik, S.S. Synthesis and antiviral activity of new 3-methyl-1,5-diphenyl-1H-pyrazole derivatives. Med. Chem. Res., 2012, 21(12), 4139-4149.
[http://dx.doi.org/10.1007/s00044-011-9960-2]
[66]
Zeng, L.F.; Zhang, H.S.; Wang, Y.H.; Sanchez, T.; Zheng, Y.T.; Neamati, N.; Long, Y.Q. Efficient synthesis and utilization of phenyl-substituted heteroaromatic carboxylic acids as aryl diketo acid isosteres in the design of novel HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(16), 4521-4524.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.047] [PMID: 18662877]
[67]
Souza, A.H. De.; Rubin, MA.; Sauzem, PD.; Anna, GSS.; Dalmolin, GD.; Drewes, CC. Intrathecal administration of a novel pyrazolyl-thiazole derivative induces delayed antinociception in mice. Sci. Electron. Arch., 2016, 4, 65-71.