Combinatorial Chemistry & High Throughput Screening

Author(s): Yang Liu, Qiuhong Wu, Ji Li, Wenxiao Jia, Xiaoyang Zhai, Jinming Yu and Hui Zhu*

DOI: 10.2174/1386207325666220324092231

Comprehensive Analysis and Validation of Competing Endogenous RNA Network and Tumor-infiltrating Immune Cells in Lung Adenocarcinoma

Page: [2240 - 2254] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Objective: The potential pathogenesis of LUAD remains largely unknown. In the present study, we evaluated the competing endogenous RNA (ceRNA) regulatory network and tumorinfiltrating immune cells in LUAD.

Methods: We obtained the RNA profiles and corresponding clinical information of LUAD patients from the TCGA data portal, and identified differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between LUAD samples and normal controls to build a ceRNA network. Additionally, the CIBERSORT algorithm was employed to analyze the patterns of immune cell infiltration. Then, two survival-predicting models were constructed based on the ceRNA network and tumor-infiltrating immune cells, which were validated by an independent GEO dataset GSE50081. Moreover, the correlation between prognosis-related ceRNAs and immune cells was also evaluated.

Results: In total, 484 LUAD samples and 59 normal controls were included in this study, and 15 DEmiRNAs, 94 DEmRNAs, and 7 DElncRNAs were integrated to construct the ceRNA network of LUAD. Meanwhile, differentially expressed tumor-infiltrating immune cells were also identified, and the expressions of monocytes and regulatory T cells were related to the overall survival (OS) of LUAD patients. Moreover, the prognostic prediction model based on ceRNA network or tumor-infiltrating immune cells exhibited significant power in predicting the survival of LUAD patients. Furthermore, co-expression analysis revealed that some prognosis-related ceRNAs, such as CCT6A, E2F7, SLC16A1, and SNHG3, were positively or negatively correlated with several tumorinfiltrating immune cells, such as monocytes and M1 macrophages.

Conclusion: This study improves our understanding of the pathogenesis of LUAD and is helpful in exploring the potential therapeutic targets and prognostic biomarkers for LUAD.

Keywords: TCGA, LUAD, prognosis, ceRNA, immune cell infiltration, lung adenocarcinoma.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[3]
Zhou, C.; Yao, L.D. Strategies to improve outcomes of patients with EGRF-mutant non-small cell lung cancer: Review of the Literature. J. Thorac. Oncol., 2016, 11, 174-186.
[http://dx.doi.org/10.1016/j.jtho.2015.10.002]
[4]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L. KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[5]
Garassino, M.C.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; Domine, M.; Hochmair, M.J.; Powell, S.; Cheng, S.Y.; Bischoff, H.G.; Peled, N.; Reck, M.; Hui, R.; Garon, E.B.; Boyer, M.; Wei, Z.; Burke, T.; Pietanza, M.C.; Rodríguez-Abreu, D. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer (KEYNOTE-189): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(3), 387-397.
[http://dx.doi.org/10.1016/S1470-2045(19)30801-0] [PMID: 32035514]
[6]
Martinez, P.; Peters, S.; Stammers, T.; Soria, J.C. Immunotherapy for the first-line treatment of patients with metastatic non-small cell lung cancer. Clin. Cancer Res., 2019, 25(9), 2691-2698.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3904] [PMID: 30642913]
[7]
Lin, J.J.; Cardarella, S.; Lydon, C.A.; Dahlberg, S.E.; Jackman, D.M.; Janne, P.A.; Johnson, B.E. Five-year survival in EGFR-mutant metastatic lung adenocarcinoma treated with EGFR-TKIs. J. Thorac. Oncol., 2016, 11, 556-565.
[http://dx.doi.org/10.1016/j.jtho.2015.12.103]
[8]
Heist, R.S.; Engelman, J.A. SnapShot: Non-small cell lung cancer. Cancer Cell, 2012, 21, 448-e442.
[http://dx.doi.org/10.1016/j.ccr.2012.03.007]
[9]
Li, X.; Wu, Z.; Fu, X.; Han, W. Long noncoding RNAs: Insights from biological features and functions to diseases. Med. Res. Rev., 2013, 33(3), 517-553.
[http://dx.doi.org/10.1002/med.21254] [PMID: 22318902]
[10]
Shi, X.; Sun, M.; Liu, H.; Yao, Y.; Song, Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett., 2013, 339(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[11]
Loewen, G.; Jayawickramarajah, J.; Zhuo, Y.; Shan, B. Functions of lncRNA HOTAIR in lung cancer. J. Hematol. Oncol., 2014, 7, 90.
[http://dx.doi.org/10.1186/s13045-014-0090-4] [PMID: 25491133]
[12]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[13]
Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[14]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[15]
Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483), 344-352.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[16]
Karreth, F.A.; Pandolfi, P.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov., 2013, 3(10), 1113-1121.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0202] [PMID: 24072616]
[17]
Man, Y.G.; Stojadinovic, A.; Mason, J.; Avital, I.; Bilchik, A.; Bruecher, B.; Protic, M.; Nissan, A.; Izadjoo, M.; Zhang, X.; Jewett, A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: Existing theories. J. Cancer, 2013, 4(1), 84-95.
[http://dx.doi.org/10.7150/jca.5482] [PMID: 23386907]
[18]
Badalamenti, G.; Fanale, D.; Incorvaia, L.; Barraco, N.; Listì, A.; Maragliano, R.; Vincenzi, B.; Calò, V.; Iovanna, J.L.; Bazan, V.; Russo, A. Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone? Cell. Immunol., 2019, 343, 103753.
[http://dx.doi.org/10.1016/j.cellimm.2018.01.013] [PMID: 29395859]
[19]
Domagala-Kulawik, J.; Osinska, I.; Hoser, G. Mechanisms of immune response regulation in lung cancer. Transl. Lung Cancer Res., 2014, 3(1), 15-22.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2013.11.03] [PMID: 25806277]
[20]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991] [PMID: 12407406]
[21]
Zhang, D.; Chen, Z.; Wang, D.C.; Wang, X. Regulatory T cells and potential inmmunotherapeutic targets in lung cancer. Cancer Metastasis Rev., 2015, 34(2), 277-290.
[http://dx.doi.org/10.1007/s10555-015-9566-0] [PMID: 25962964]
[22]
Kolahian, S.; Öz, H.H.; Zhou, B.; Griessinger, C.M.; Rieber, N.; Hartl, D. The emerging role of myeloid-derived suppressor cells in lung diseases. Eur. Respir. J., 2016, 47(3), 967-977.
[http://dx.doi.org/10.1183/13993003.01572-2015] [PMID: 26846830]
[23]
Song, Q.; Shang, J.; Yang, Z.; Zhang, L.; Zhang, C.; Chen, J.; Wu, X. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J. Transl. Med., 2019, 17(1), 70.
[http://dx.doi.org/10.1186/s12967-019-1824-4] [PMID: 30832680]
[24]
Liu, X.; Wu, S.; Yang, Y.; Zhao, M.; Zhu, G.; Hou, Z. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer. Biomed. Pharmacother., 2017, 95, 55-561.
[http://dx.doi.org/10.1016/j.biopha.2017.08.003]
[25]
Huang, R.; Zeng, Z.; Li, G.; Song, D.; Yan, P.; Yin, H.; Hu, P.; Zhu, X.; Chang, R.; Zhang, X.; Zhang, J.; Meng, T.; Huang, Z. The construction and comprehensive analysis of ceRNA networks and tumor-infiltrating immune cells in bone metastatic melanoma. Front. Genet., 2019, 10, 828.
[http://dx.doi.org/10.3389/fgene.2019.00828] [PMID: 31608101]
[26]
Chang, Z.; Huang, R.; Fu, W.; Li, J.; Ji, G.; Huang, J.; Shi, W.; Yin, H.; Wang, W.; Meng, T.; Huang, Z.; Wei, Q.; Qin, H. The construction and analysis of ceRNA network and patterns of immune infiltration in colon adenocarcinoma metastasis. Front. Cell Dev. Biol., 2020, 8, 688.
[http://dx.doi.org/10.3389/fcell.2020.00688] [PMID: 32850813]
[27]
Liu, S.; Song, A.; Zhou, X.; Huo, Z.; Yao, S.; Yang, B.; Liu, Y.; Wang, Y. ceRNA network development and tumour-infiltrating immune cell analysis of metastatic breast cancer to bone. J. Bone Oncol., 2020, 24, 100304.
[http://dx.doi.org/10.1016/j.jbo.2020.100304] [PMID: 32760644]
[28]
Wang, X.; Yin, H.; Zhang, L.; Zheng, D.; Yang, Y.; Zhang, J.; Jiang, H.; Ling, X.; Xin, Y.; Liang, H.; Fang, C.; Ma, J.; Zhu, J. The construction and analysis of the aberrant lncRNA-miRNA-mRNA network in non-small cell lung cancer. J. Thorac. Dis., 2019, 11(5), 1772-1778.
[http://dx.doi.org/10.21037/jtd.2019.05.69] [PMID: 31285869]
[29]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[30]
Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol., 2014, 67(8), 850-857.
[http://dx.doi.org/10.1016/j.jclinepi.2014.03.012] [PMID: 24831050]
[31]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(Database issue), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[32]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[33]
Sauerbrei, W.; Royston, P.; Binder, H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat. Med., 2007, 26(30), 5512-5528.
[http://dx.doi.org/10.1002/sim.3148] [PMID: 18058845]
[34]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[35]
Network, N.C.C. NCCN clinical practice guidelines in oncology. Non-small-cell lung cancer, version 2.2021. 2021. Available from: https://www.nccn.org/professionals/physician_gls/ (accessed on December 15).
[36]
Zhao, X.; Li, X.; Zhou, L.; Ni, J.; Yan, W.; Ma, R.; Wu, J.; Feng, J.; Chen, P. LncRNA HOXA11-AS drives cisplatin resistance of human LUAD cells via modulating miR-454-3p/Stat3. Cancer Sci., 2018, 109(10), 3068-3079.
[http://dx.doi.org/10.1111/cas.13764] [PMID: 30099826]
[37]
Jia, Y.; Duan, Y.; Liu, T.; Wang, X.; Lv, W.; Wang, M.; Wang, J.; Liu, L. LncRNA TTN-AS1 promotes migration, invasion, and epithelial mesenchymal transition of lung adenocarcinoma via sponging miR-142-5p to regulate CDK5. Cell Death Dis., 2019, 10(8), 573.
[http://dx.doi.org/10.1038/s41419-019-1811-y] [PMID: 31363080]
[38]
Huang, R.; Meng, T.; Chen, R.; Yan, P.; Zhang, J.; Hu, P.; Zhu, X.; Yin, H.; Song, D.; Huang, Z. The construction and analysis of tumor-infiltrating immune cell and ceRNA networks in recurrent soft tissue sarcoma. Aging (Albany NY), 2019, 11(22), 10116-10143.
[http://dx.doi.org/10.18632/aging.102424] [PMID: 31739284]
[39]
Yao, Y.; Zhang, T.; Qi, L.; Zhou, C.; Wei, J.; Feng, F.; Liu, R.; Sun, C. Integrated analysis of co-expression and ceRNA network identifies five lncRNAs as prognostic markers for breast cancer. J. Cell. Mol. Med., 2019, 23(12), 8410-8419.
[http://dx.doi.org/10.1111/jcmm.14721] [PMID: 31613058]
[40]
Tanic, N.; Brkic, G.; Dimitrijevic, B.; Dedovic-Tanic, N.; Gefen, N.; Benharroch, D.; Gopas, J. Identification of differentially expressed mRNA transcripts in drug-resistant versus parental human melanoma cell lines. Anticancer Res., 2006, 26(3A), 2137-2142.
[PMID: 16827156]
[41]
Yokota, S.; Yamamoto, Y.; Shimizu, K.; Momoi, H.; Kamikawa, T.; Yamaoka, Y.; Yanagi, H.; Yura, T.; Kubota, H. Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones, 2001, 6(4), 345-350.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0345:IEOCCC>2.0.CO;2] [PMID: 11795471]
[42]
Zhu, M.; Geng, L.; Shen, W.; Wang, Y.; Liu, J.; Cheng, Y.; Wang, C.; Dai, J.; Jin, G.; Hu, Z. Exome-wide association study identifies low-frequency coding variants in 2p23.2 and 7p11.2 associated with survival of non-small cell lung cancer patients. J. Thorac. Oncol., 2017, 12, 644-656.
[http://dx.doi.org/10.1016/j.jtho.2016.12.025]
[43]
Ying, Z.; Tian, H.; Li, Y.; Lian, R.; Li, W.; Wu, S.; Zhang, H.Z.; Wu, J.; Liu, L.; Song, J.; Guan, H.; Cai, J.; Zhu, X.; Li, J.; Li, M. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J. Clin. Invest., 2017, 127(5), 1725-1740.
[http://dx.doi.org/10.1172/JCI90439] [PMID: 28375158]
[44]
Di Stefano, L.; Jensen, M.R.; Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J., 2003, 22(23), 6289-6298.
[http://dx.doi.org/10.1093/emboj/cdg613] [PMID: 14633988]
[45]
Wang, C.; Li, S.; Xu, J.; Niu, W.; Li, S. microRNA-935 is reduced in non-small cell lung cancer tissue, is linked to poor outcome, and acts on signal transduction mediator E2F7 and the AKT pathway. Br. J. Biomed. Sci., 2019, 76(1), 17-23.
[http://dx.doi.org/10.1080/09674845.2018.1520066] [PMID: 30203720]
[46]
Liang, R.; Xiao, G.; Wang, M.; Li, X.; Li, Y.; Hui, Z.; Sun, X.; Qin, S.; Zhang, B.; Du, N. SNHG6 functions as a competing endogenous RNA to regulate E2F7 expression by sponging miR-26a-5p in lung adenocarcinoma. Biomed. Pharmacother., 2018, 107, 1434-1446.
[http://dx.doi.org/10.1016/j.biopha.2018.08.099]
[47]
Xu, B.; Mei, J.; Ji, W.; Bian, Z.; Jiao, J.; Sun, J.; Shao, J. LncRNA SNHG3, a potential oncogene in human cancers. Cancer Cell Int., 2020, 20(1), 536.
[http://dx.doi.org/10.1186/s12935-020-01608-x] [PMID: 33292213]
[48]
Liu, L.; Ni, J.; He, X. Upregulation of the long noncoding RNA SNHG3 promotes lung adenocarcinoma proliferation. Dis. Markers, 2018, 2018, 5736716.
[http://dx.doi.org/10.1155/2018/5736716] [PMID: 30154938]
[49]
Shi, J.; Li, J.; Yang, S.; Hu, X.; Chen, J.; Feng, J.; Shi, T.; He, Y.; Mei, Z.; He, W.; Xie, J.; Li, S.; Jie, Z.; Tu, S. LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of non-small-cell lung cancer cells through activating TGF-β pathway and IL-6/JAK2/STAT3 pathway. J. Cell. Physiol., 2020, 235(3), 2891-2900.
[http://dx.doi.org/10.1002/jcp.29194] [PMID: 31602642]
[50]
Steven, A.; Fisher, S.A.; Robinson, B.W. Immunotherapy for lung cancer. Respirology, 2016, 21(5), 821-833.
[http://dx.doi.org/10.1111/resp.12789] [PMID: 27101251]
[51]
Serbina, N.V.; Jia, T.; Hohl, T.M.; Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol., 2008, 26, 421-452.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090326] [PMID: 18303997]
[52]
Lee, S.W.L.; Adriani, G.; Kamm, R.D.; Gillrie, M.R. Models for monocytic cells in the tumor microenvironment. Adv. Exp. Med. Biol., 2020, 1224, 87-115.
[http://dx.doi.org/10.1007/978-3-030-35723-8_7] [PMID: 32036607]
[53]
Olingy, C.E.; Dinh, H.Q.; Hedrick, C.C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol., 2019, 106(2), 309-322.
[http://dx.doi.org/10.1002/JLB.4RI0818-311R] [PMID: 30776148]
[54]
Hu, P.; Shen, H.; Wang, G.; Zhang, P.; Liu, Q.; Du, J. Prognostic significance of systemic inflammation-based lymphocyte- monocyte ratio in patients with lung cancer: Based on a large cohort study. PLoS One, 2014, 9(9), e108062.
[http://dx.doi.org/10.1371/journal.pone.0108062] [PMID: 25275631]
[55]
Wolf, D.; Sopper, S.; Pircher, A.; Gastl, G.; Wolf, A.M. Treg(s) in cancer: Friends or foe? J. Cell. Physiol., 2015, 230(11), 2598-2605.
[http://dx.doi.org/10.1002/jcp.25016] [PMID: 25913194]
[56]
Takeuchi, Y.; Nishikawa, H. Roles of regulatory T cells in cancer immunity. Int. Immunol., 2016, 28(8), 401-409.
[http://dx.doi.org/10.1093/intimm/dxw025] [PMID: 27160722]
[57]
Shang, B.; Liu, Y.; Jiang, S.J.; Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Sci. Rep., 2015, 5, 15179.
[http://dx.doi.org/10.1038/srep15179] [PMID: 26462617]
[58]
Najafi, M.; Hashemi Goradel, N.; Farhood, B.; Salehi, E.; Nashtaei, M.S.; Khanlarkhani, N.; Khezri, Z.; Majidpoor, J.; Abouzaripour, M.; Habibi, M.; Kashani, I.R.; Mortezaee, K. Macrophage polarity in cancer: A review. J. Cell. Biochem., 2019, 120(3), 2756-2765.
[http://dx.doi.org/10.1002/jcb.27646] [PMID: 30270458]
[59]
Yuan, A.; Hsiao, Y.J.; Chen, H.Y.; Chen, H.W.; Ho, C.C.; Chen, Y.Y.; Liu, Y.C.; Hong, T.H.; Yu, S.L.; Chen, J.J.; Yang, P.C. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep., 2015, 5, 14273.
[http://dx.doi.org/10.1038/srep14273] [PMID: 26399191]
[60]
Jackute, J.; Zemaitis, M.; Pranys, D.; Sitkauskiene, B.; Miliauskas, S.; Vaitkiene, S.; Sakalauskas, R. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol., 2018, 19(1), 3.
[http://dx.doi.org/10.1186/s12865-018-0241-4] [PMID: 29361917]
[61]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[62]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[63]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]