Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy

Page: [373 - 387] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability, and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe the structures, functions, and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis, and causes the death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare them with other scientific information.

Keywords: Apoptosis, cancer therapy, clinical trials, cytotoxicity, immunoRNases, ribonuclease.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[2]
Liu, M.; Guo, F. Recent updates on cancer immunotherapy. Precis. Clin. Med., 2018, 1(2), 65-74.
[http://dx.doi.org/10.1093/pcmedi/pby011] [PMID: 30687562]
[3]
Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies (Basel), 2020, 9(3), 34.
[http://dx.doi.org/10.3390/antib9030034] [PMID: 32698317]
[4]
Titov, A.; Petukhov, A.; Staliarova, A.; Motorin, D.; Bulatov, E.; Shuvalov, O.; Soond, S.M.; Piacentini, M.; Melino, G.; Zaritskey, A.; Barlev, N.A. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death Dis., 2018, 9(9), 897.
[http://dx.doi.org/10.1038/s41419-018-0918-x] [PMID: 30181581]
[5]
Andersen, M.H. Anti-cancer immunotherapy: breakthroughs and future strategies. Semin. Immunopathol., 2019, 41(1), 1-3.
[http://dx.doi.org/10.1007/s00281-018-0711-z] [PMID: 30242450]
[6]
Sachdeva, R.; Singh, P.; Bose, A.; Kalha, B.; Sarkar, M.; Pal, R. Anticancer Immunotherapy. In: Prospects and Challenges; Bose, K.; Chaudhari, P., Eds.; Springer: Singapore, 2019.
[7]
Alard, E.; Butnariu, A.B.; Grillo, M.; Kirkham, C.; Zinovkin, D.A.; Newnham, L.; Macciochi, J.; Pranjol, M.Z.I. Advances in anti-cancer immunotherapy: Car-T cell, checkpoint inhibitors, dendritic cell vaccines, and oncolytic viruses, and emerging cellular and molecular targets. Cancers (Basel), 2020, 12(7), 1826.
[http://dx.doi.org/10.3390/cancers12071826] [PMID: 32645977]
[8]
Ardelt, W.; Ardelt, B.; Darzynkiewicz, Z. Ribonucleases as potential modalities in anticancer therapy. Eur. J. Pharmacol., 2009, 625(1-3), 181-189.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.067] [PMID: 19825371]
[9]
Makarov, A.A.; Kolchinsky, A.; Ilinskaya, O.N. Binase and other microbial RNases as potential anticancer agents. BioEssays, 2008, 30(8), 781-790.
[http://dx.doi.org/10.1002/bies.20789] [PMID: 18623073]
[10]
Pastan, I.; Hassan, R.; Fitzgerald, D.J.; Kreitman, R.J. Immunotoxin therapy of cancer. Nat. Rev. Cancer, 2006, 6(7), 559-565.
[http://dx.doi.org/10.1038/nrc1891] [PMID: 16794638]
[11]
Polito, L.; Djemil, A.; Bortolotti, M. Plant toxin-based immunotoxins for cancer therapy: A short overview. Biomedicines, 2016, 4(2), 12.
[http://dx.doi.org/10.3390/biomedicines4020012] [PMID: 28536379]
[12]
Formoso, E.; Matxain, J.M.; Lopez, X.; York, D.M. Molecular dynamics simulation of bovine pancreatic ribonuclease A-CpA and transition state-like complexes. J. Phys. Chem. B, 2010, 114(21), 7371-7382.
[http://dx.doi.org/10.1021/jp909004y] [PMID: 20455590]
[13]
Cuchillo, C.M.; Nogués, M.V.; Raines, R.T. Bovine pancreatic ribonuclease: Fifty years of the first enzymatic reaction mechanism. Biochemistry, 2011, 50(37), 7835-7841.
[http://dx.doi.org/10.1021/bi201075b] [PMID: 21838247]
[14]
Gotte, G.; Laurents, D.V.; Merlino, A.; Picone, D.; Spadaccini, R. Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: New scaffolds for potential antitumor drugs. FEBS Lett., 2013, 587(22), 3601-3608.
[http://dx.doi.org/10.1016/j.febslet.2013.09.038] [PMID: 24113657]
[15]
Vakili-Azghandi, M.; Nassiri, M.; Ghovvati, S.; Javadmanesh, A. Ribonucleases as potential therapeutic agents. Agri. Biotechnol. J., 2021, 13, 29-56.
[16]
Leich, F.; Köditz, J.; Ulbrich-Hofman, R.; Arnold, U. Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity. J. Mol. Biol., 2006, 358(5), 1305-1313.
[http://dx.doi.org/10.1016/j.jmb.2006.03.007] [PMID: 16580680]
[17]
Olmo, N.; Turnay, J.; González de Buitrago, G.; López de Silanes, I.; Gavilanes, J.G.; Lizarbe, M.A. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur. J. Biochem., 2001, 268(7), 2113-2123.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02086.x] [PMID: 11277935]
[18]
Lee, H.H.; Wang, Y.N.; Hung, M.C. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol. Aspects Med., 2019, 70, 106-116.
[http://dx.doi.org/10.1016/j.mam.2019.03.003] [PMID: 30902663]
[19]
Gotte, G.; Menegazzi, M. Biological activities of secretory RNases: Focus on their oligomerization to design antitumor drugs. Front. Immunol., 2019, 10, 2626.
[http://dx.doi.org/10.3389/fimmu.2019.02626] [PMID: 31849926]
[20]
Kobe, B.; Deisenhofer, J. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J. Mol. Biol., 1996, 264(5), 1028-1043.
[http://dx.doi.org/10.1006/jmbi.1996.0694] [PMID: 9000628]
[21]
Dickson, K.A.; Haigis, M.C.; Raines, R.T. Ribonuclease inhibitor: Structure and function. Prog. Nucleic Acid Res. Mol. Biol., 2005, 80, 349-374.
[http://dx.doi.org/10.1016/S0079-6603(05)80009-1] [PMID: 16164979]
[22]
Lomax, J.E.; Bianchetti, C.M.; Chang, A.; Phillips, G.N., Jr; Fox, B.G.; Raines, R.T. Functional evolution of ribonuclease inhibitor: Insights from birds and reptiles. J. Mol. Biol., 2014, 426(17), 3041-3056.
[http://dx.doi.org/10.1016/j.jmb.2014.06.007] [PMID: 24941155]
[23]
Suri, S.; Panda, B.; Javed, S.; Mohd, A. RNase: A novel enzyme for treatment of cancers. Internet J. Oncol., 2007, 5, 1-5.
[24]
Wang, X.; Li, Y.; Li, Q.; Neufeld, C.I.; Pouli, D.; Sun, S.; Yang, L.; Deng, P.; Wang, M.; Georgakoudi, I.; Tang, S.; Xu, Q. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J. Control. Release, 2017, 263, 39-45.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.037] [PMID: 28153764]
[25]
Peracaula, R.; Royle, L.; Tabarés, G.; Mallorqui-Fernández, G.; Barrabés, S.; Harvey, D.J.; Dwek, R.A.; Rudd, P.M.; de Llorens, R. Glycosylation of human pancreatic ribonuclease: Differences between normal and tumor states. Glycobiology, 2003, 13(4), 227-244.
[http://dx.doi.org/10.1093/glycob/cwg019] [PMID: 12626415]
[26]
Vert, A.; Castro, J.; Ribó, M.; Benito, A.; Vilanova, M. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget, 2016, 7(14), 18309-18324.
[http://dx.doi.org/10.18632/oncotarget.7579] [PMID: 26918450]
[27]
Weber, T.; Mavratzas, A.; Kiesgen, S.; Haase, S.; Bötticher, B.; Exner, E.; Mier, W.; Grosse-Hovest, L.; Jäger, D.; Arndt, M.A.; Krauss, J. A humanized anti-CD22-onconase antibody-drug conjugate mediates highly potent destruction of targeted tumor cells. J. Immunol. Res., 2015, 2015, 561814.
[28]
Leland, P.A.; Raines, R.T. Cancer chemotherapy-ribonucleases to the rescue. Chem. Biol., 2001, 8(5), 405-413.
[http://dx.doi.org/10.1016/S1074-5521(01)00030-8] [PMID: 11358688]
[29]
Zhao, H.; Ardelt, B.; Ardelt, W.; Shogen, K.; Darzynkiewicz, Z. The cytotoxic ribonuclease onconase targets RNA interference (siRNA). Cell Cycle, 2008, 7(20), 3258-3261.
[http://dx.doi.org/10.4161/cc.7.20.6855] [PMID: 18927512]
[30]
Johnson, R.J.; McCoy, J.G.; Bingman, C.A.; Phillips, G.N., Jr; Raines, R.T. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J. Mol. Biol., 2007, 368(2), 434-449.
[http://dx.doi.org/10.1016/j.jmb.2007.02.005] [PMID: 17350650]
[31]
Boyer, P.L.; Smith, S.J.; Zhao, X.Z.; Das, K.; Gruber, K.; Arnold, E.; Burke, T.R., Jr; Hughes, S.H. Developing and evaluating inhibitors against the RNase H active site of HIV-1 reverse transcriptase. J. Virol., 2018, 92(13), e02203-e02217.
[http://dx.doi.org/10.1128/JVI.02203-17] [PMID: 29643235]
[32]
Yakovlev, G.I.; Mitkevich, V.A.; Makarov, A.A. Ribonuclease inhibitors. Mol. Biol., 2006, 40, 867-874.
[http://dx.doi.org/10.1134/S0026893306060045]
[33]
Sarangdhar, M.A.; Allam, R. Angiogenin (ANG)-ribonuclease inhibitor (RNH1) system in protein Synthesis and disease. Int. J. Mol. Sci., 2021, 22(3), 1287.
[http://dx.doi.org/10.3390/ijms22031287] [PMID: 33525475]
[34]
Liu, J.; Wang, X.P.; Cho, S.; Lim, B.K.; Irwin, D.M.; Ryder, O.A.; Zhang, Y.P.; Yu, L. Evolutionary and functional novelty of pancreatic ribonuclease: A study of Musteloidea (order Carnivora). Sci. Rep., 2014, 4, 5070.
[http://dx.doi.org/10.1038/srep05070] [PMID: 24861105]
[35]
Lilley, D.M.J. Mechanisms of RNA catalysis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1580), 2910-2917.
[http://dx.doi.org/10.1098/rstb.2011.0132] [PMID: 21930582]
[36]
Park, C.; Schultz, L.W.; Raines, R.T. Contribution of the active site histidine residues of ribonuclease A to nucleic acid binding. Biochemistry, 2001, 40(16), 4949-4956.
[http://dx.doi.org/10.1021/bi0100182] [PMID: 11305910]
[37]
Raines, R.T. Active Site of Ribonuclease A. In: Artificial Nucleases. Nucleic Acids and Molecular Biology; Zenkova, M.A., Ed.; Springer: Berlin, Heidelberg, 2004.
[38]
Raines, R.T. Enzymes as Chemotherapeutic Agents. In: Chembiomolecular Science; Shibasaki, M.; Iino, M.; Osada, H., Eds.; Springer: Tokyo, 2012.
[http://dx.doi.org/10.1007/978-4-431-54038-0_28]
[39]
Bekaii-Saab, T.; Williams, N.; Plass, C.; Calero, M.V.; Eng, C. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma. BMC Cancer, 2006, 6, 278.
[http://dx.doi.org/10.1186/1471-2407-6-278] [PMID: 17150109]
[40]
Hsu, J.L.; Hung, M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev., 2016, 35(4), 575-588.
[http://dx.doi.org/10.1007/s10555-016-9649-6] [PMID: 27913999]
[41]
Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer, 2018, 17(1), 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
[42]
Wu, D.; Piszczek, G. Measuring the affinity of protein-protein interactions on a single-molecule level by mass photometry. Anal. Biochem., 2020, 592, 113575.
[http://dx.doi.org/10.1016/j.ab.2020.113575] [PMID: 31923382]
[43]
Vakili-Azghandi, M.; Nassiri, M.; Ghovvati, S.; Javadmanesh, A. Engineering and production of recombinant bovine pancreatic ribonuclease enzyme (RNase A) as a potential therapeutic. Agri. Biotechnol. J., 2020, 12, 61-78.
[44]
Bretscher, L.E.; Abel, R.L.; Raines, R.T. A ribonuclease A variant with low catalytic activity but high cytotoxicity. J. Biol. Chem., 2000, 275(14), 9893-9896.
[http://dx.doi.org/10.1074/jbc.275.14.9893] [PMID: 10744660]
[45]
Gaur, D.; Swaminathan, S.; Batra, J.K. Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J. Biol. Chem., 2001, 276(27), 24978-24984.
[http://dx.doi.org/10.1074/jbc.M102440200] [PMID: 11342552]
[46]
D’Avino, C.; Paciello, R.; Riccio, G.; Coppola, C.; Laccetti, P.; Maurea, N.; Raines, R.T.; De Lorenzo, C. Effects of a second-generation human anti-ErbB2 ImmunoRNase on trastuzumab-resistant tumors and cardiac cells. Protein Eng. Des. Sel., 2014, 27(3), 83-88.
[http://dx.doi.org/10.1093/protein/gzt065] [PMID: 24421342]
[47]
Ghovvati, S. Engineering a ScFv-Fc antibody-rnase fusion protein for HER2 antigen targeting, PhD Thesis, Ferdowsi University of Mashhad: Mashhad, 2014.
[48]
Lee, F.S.; Auld, D.S.; Vallee, B.L. Tryptophan fluorescence as a probe of placental ribonuclease inhibitor binding to angiogenin. Biochemistry, 1989, 28(1), 219-224.
[http://dx.doi.org/10.1021/bi00427a030] [PMID: 2706245]
[49]
Messmore, J.M.; Fuchs, D.N.; Raines, R.T.; Ribonuclease, A. Ribonuclease a: Revealing structure-function relationships with semisynthesis. J. Am. Chem. Soc., 1995, 117(31), 8057-8060.
[http://dx.doi.org/10.1021/ja00136a001] [PMID: 21732653]
[50]
Pous, J.; Canals, A.; Terzyan, S.S.; Guasch, A.; Benito, A.; Ribó, M.; Vilanova, M.; Coll, M. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases. J. Mol. Biol., 2000, 303(1), 49-60.
[http://dx.doi.org/10.1006/jmbi.2000.4506] [PMID: 11021969]
[51]
Rossi, E.A.; Goldenberg, D.M.; Chang, C.H. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug. Chem., 2012, 23(3), 309-323.
[http://dx.doi.org/10.1021/bc2004999] [PMID: 22168393]
[52]
Bosch, M.; Benito, A.; Ribó, M.; Puig, T.; Beaumelle, B.; Vilanova, M. A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry, 2004, 43(8), 2167-2177.
[http://dx.doi.org/10.1021/bi035729+] [PMID: 14979713]
[53]
Erickson, H.A.; Jund, M.D.; Pennell, C.A. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Eng. Des. Sel., 2006, 19(1), 37-45.
[http://dx.doi.org/10.1093/protein/gzi073] [PMID: 16243897]
[54]
Yamada, H.; Tamada, T.; Kosaka, M.; Miyata, K.; Fujiki, S.; Tano, M.; Moriya, M.; Yamanishi, M.; Honjo, E.; Tada, H.; Ino, T.; Yamaguchi, H.; Futami, J.; Seno, M.; Nomoto, T.; Hirata, T.; Yoshimura, M.; Kuroki, R. ‘Crystal lattice engineering,’ an approach to engineer protein crystal contacts by creating intermolecular symmetry: Crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Protein Sci., 2007, 16(7), 1389-1397.
[http://dx.doi.org/10.1110/ps.072851407] [PMID: 17586772]
[55]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. U.S. Patent 20090311784, 2009.
[56]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. U.S. Patent 7655757, 2010.
[57]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. U.S. Patent 20120009173, 2012.
[58]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. U.S. Patent 20130011904, 2013.
[59]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. 2019.
[60]
Raines, R.T.; Phillips, G.N.; Johnson, R.J.; McCoy, J.G. Cytotoxic ribonuclease variants. U.S. Patent 9255260, 2016.
[61]
Forouharmehr, A.; Nassiri, M.; Ghovvati Roudsari, S.; Javadmanesh, A. Production and introduction of a novel immunotoxin based on engineered RNase A for inducing death to Her1-positive cell lines. J. Cell. Physiol., 2020, 235(5), 4679-4687.
[http://dx.doi.org/10.1002/jcp.29346] [PMID: 31663127]
[62]
Leland, P.A.; Schultz, L.W.; Kim, B.M.; Raines, R.T. Ribonuclease A variants with potent cytotoxic activity. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10407-10412.
[http://dx.doi.org/10.1073/pnas.95.18.10407] [PMID: 9724716]
[63]
Rutkoski, T.J.; Kurten, E.L.; Mitchell, J.C.; Raines, R.T. Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J. Mol. Biol., 2005, 354(1), 41-54.
[http://dx.doi.org/10.1016/j.jmb.2005.08.007] [PMID: 16188273]
[64]
Rutkoski, T.J.; Kink, J.A.; Strong, L.E.; Schilling, C.I.; Raines, R.T. Antitumor activity of ribonuclease multimers created by site-specific covalent tethering. Bioconjug. Chem., 2010, 21(9), 1691-1702.
[http://dx.doi.org/10.1021/bc100292x] [PMID: 20704261]
[65]
Fuchs, S.M.; Rutkoski, T.J.; Kung, V.M.; Groeschl, R.T.; Raines, R.T. Increasing the potency of a cytotoxin with an arginine graft. Protein Eng. Des. Sel., 2007, 20(10), 505-509.
[http://dx.doi.org/10.1093/protein/gzm051] [PMID: 17954521]
[66]
Klink, T.A.; Raines, R.T. Conformational stability is a determinant of ribonuclease A cytotoxicity. J. Biol. Chem., 2000, 275(23), 17463-17467.
[http://dx.doi.org/10.1074/jbc.M001132200] [PMID: 10747991]
[67]
Lee, I. Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin. Biol. Ther., 2008, 8(6), 813-827.
[http://dx.doi.org/10.1517/14712598.8.6.813] [PMID: 18476793]
[68]
Vogelzang, N.J.; Aklilu, M.; Stadler, W.M.; Dumas, M.C.; Mikulski, S.M. A phase II trial of weekly intravenous ranpirnase (Onconase), a novel ribonuclease in patients with metastatic kidney cancer. Invest. New Drugs, 2001, 19(3), 255-260.
[http://dx.doi.org/10.1023/A:1010633004157] [PMID: 11561684]
[69]
Goparaju, C.M.; Blasberg, J.D.; Volinia, S.; Palatini, J.; Ivanov, S.; Donington, J.S.; Croce, C.; Carbone, M.; Yang, H.; Pass, H.I. Onconase mediated NFKβ downregulation in malignant pleural mesothelioma. Oncogene, 2011, 30(24), 2767-2777.
[http://dx.doi.org/10.1038/onc.2010.643] [PMID: 21317924]
[70]
Ardelt, B.; Juan, G.; Burfeind, P.; Salomon, T.; Wu, J.M.; Hsieh, T.C.; Li, X.; Sperry, R.; Pozarowski, P.; Shogen, K.; Ardelt, W.; Darzynkiewicz, Z. Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. Int. J. Oncol., 2007, 31(3), 663-669.
[http://dx.doi.org/10.3892/ijo.31.3.663] [PMID: 17671695]
[71]
Halicka, D.H.; Pozarowski, P.; Ita, M.; Ardelt, W.J.; Mikulski, S.M.; Shogen, K.; Darzynkiewicz, Z. Enhancement of activation-induced apoptosis of lymphocytes by the cytotoxic ribonuclease onconase (Ranpirnase). Int. J. Oncol., 2002, 21(6), 1245-1250.
[http://dx.doi.org/10.3892/ijo.21.6.1245] [PMID: 12429974]
[72]
Ariannejhad, H.; Nassiri, M.R.; Ghovvati, S.; Dehghani, H.; Asoodeh, A. Designing of protein structure of ranpirnase as an immunotoxin based on bovine pancreatic ribonuclease using molecular dynamic and static simulations. Iranian J. Anim. Sci. Res, 2020, 12, 351-360.
[73]
Turcotte, R.F.; Lavis, L.D.; Raines, R.T. Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J., 2009, 276(14), 3846-3857.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07098.x] [PMID: 19523116]
[74]
Lee, J.E.; Raines, R.T. Ribonucleases as novel chemotherapeutics: The ranpirnase example. BioDrugs, 2008, 22(1), 53-58.
[http://dx.doi.org/10.2165/00063030-200822010-00006] [PMID: 18215091]
[75]
Majchrzak, A.; Witkowska, M. Mędra, A.; Zwolińska, M.; Bogusz, J.; Cebula-Obrzut, B.; Darzynkiewicz, Z.; Robak, T.; Smolewski, P. In vitro cytotoxicity of ranpirnase (onconase) in combination with components of R-CHOP regimen against Diffuse Large B Cell Lymphoma (DLBCL) cell line. Postepy Hig. Med. Dosw., 2013, 67, 1166-1172.
[http://dx.doi.org/10.5604/17322693.1078386] [PMID: 24379257]
[76]
Akbari, B.; Farajnia, S.; Ahdi Khosroshahi, S.; Safari, F.; Yousefi, M.; Dariushnejad, H.; Rahbarnia, L. Immunotoxins in cancer therapy: Review and update. Int. Rev. Immunol., 2017, 36(4), 207-219.
[http://dx.doi.org/10.1080/08830185.2017.1284211] [PMID: 28282218]
[77]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2), 1010428317692226.
[http://dx.doi.org/10.1177/1010428317692226] [PMID: 28218037]
[78]
Kawakami, K.; Nakajima, O.; Morishita, R.; Nagai, R. Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. Sci. World J., 2006, 6, 781-790.
[http://dx.doi.org/10.1100/tsw.2006.162] [PMID: 16830050]
[79]
Camacho-Leal, M.P.; Sciortino, M.; Cabodi, S. ErbB2 receptor in breast cancer: Implications in cancer cell migration, invasion and resistance to targeted therapy. In: Breast Cancer - From Biology to Medicine; Van Pham, P., Ed.; Intech. Open: London, UK, 2017.
[80]
Tan, M.; Yu, D. Molecular Mechanisms of ErbB2-mediated Breast Cancer Chemoresistance. In: Breast Cancer Chemosensitivity; Yu, D.; Hung, M.C., Eds.; Springer: New York, NY, 2007, p. 608.
[http://dx.doi.org/10.1007/978-0-387-74039-3_9]
[81]
Lee, J.Y.; Shin, D.H.; Kim, J.S. Anticancer Effect of metformin in Herceptin-conjugated liposome for breast cancer. Pharmaceutics, 2019, 12(1), 11.
[http://dx.doi.org/10.3390/pharmaceutics12010011] [PMID: 31877620]
[82]
De Lorenzo, C.; Arciello, A.; Cozzolino, R.; Palmer, D.B.; Laccetti, P.; Piccoli, R.; D’Alessio, G. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res., 2004, 64(14), 4870-4874.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3717] [PMID: 15256457]
[83]
De Lorenzo, C.; D’Alessio, G. Human anti-ErbB2 immunoagents--immunoRNases and compact antibodies. FEBS J., 2009, 276(6), 1527-1535.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06896.x] [PMID: 19220462]
[84]
Borriello, M.; Laccetti, P.; Terrazzano, G.; D’Alessio, G.; De Lorenzo, C. A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours. Br. J. Cancer, 2011, 104(11), 1716-1723.
[http://dx.doi.org/10.1038/bjc.2011.146] [PMID: 21559015]
[85]
Riccio, G.; D’Avino, C.; Raines, R.T.; De Lorenzo, C. A novel fully human antitumor immunoRNase resistant to the RNase inhibitor. Protein Eng. Des. Sel., 2013, 26(3), 243-248.
[http://dx.doi.org/10.1093/protein/gzs101] [PMID: 23232187]
[86]
Jordaan, S.; Akinrinmade, O.A.; Nachreiner, T.; Cremer, C.; Naran, K.; Chetty, S.; Barth, S. Updates in the development of immunoRNases for the selective killing of tumor cells. Biomedicines, 2018, 6(1), 28.
[http://dx.doi.org/10.3390/biomedicines6010028] [PMID: 29510557]
[87]
Barata, P.; Sood, A.K.; Hong, D.S. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat. Rev., 2016, 50, 35-47.
[http://dx.doi.org/10.1016/j.ctrv.2016.08.004] [PMID: 27612280]
[88]
Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997.
[http://dx.doi.org/10.1016/j.biopha.2020.109997] [PMID: 32062550]
[89]
Sinatra, F.; Callari, D.; Viola, M.; Longombardo, M.T.; Patania, M.; Litrico, L.; Emmanuele, G.; Lanteri, E.; D’Alessandro, N.; Travali, S. Bovine seminal RNase induces apoptosis in normal proliferating lymphocytes. Int. J. Clin. Lab. Res., 2000, 30(4), 191-196.
[http://dx.doi.org/10.1007/s005990070006] [PMID: 11289710]
[90]
Ardelt, W.; Shogen, K.; Darzynkiewicz, Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr. Pharm. Biotechnol., 2008, 9(3), 215-225.
[http://dx.doi.org/10.2174/138920108784567245] [PMID: 18673287]
[91]
Hodge, T.; Draper, K.; Brasel, T.; Freiberg, A.; Squiquera, L.; Sidransky, D.; Sulley, J.; Taxman, D.J. Antiviral effect of ranpirnase against Ebola virus. Antiviral Res., 2016, 132, 210-218.
[http://dx.doi.org/10.1016/j.antiviral.2016.06.009] [PMID: 27350309]
[92]
Shen, R.; Li, J.; Ye, D.; Wang, Q.; Fei, J. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of non-small-cell lung carcinoma and malignant mesothelioma. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(10), 894-901.
[http://dx.doi.org/10.1093/abbs/gmw082] [PMID: 27590062]
[93]
Lee, I.; Lee, Y.H.; Mikulski, S.M.; Shogen, K. Effect of ONCONASE +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv. Exp. Med. Biol., 2003, 530, 187-196.
[http://dx.doi.org/10.1007/978-1-4615-0075-9_18] [PMID: 14562716]
[94]
Mikulski, S.M.; Viera, A.; Darzynkiewicz, Z.; Shogen, K. Synergism between a novel amphibian oocyte ribonuclease and lovastatin in inducing cytostatic and cytotoxic effects in human lung and pancreatic carcinoma cell lines. Br. J. Cancer, 1992, 66(2), 304-310.
[http://dx.doi.org/10.1038/bjc.1992.261] [PMID: 1503903]
[95]
Rybak, S.M.; Pearson, J.W.; Fogler, W.E.; Volker, K.; Spence, S.E.; Newton, D.L.; Mikulski, S.M.; Ardelt, W.; Riggs, C.W.; Kung, H.F.; Longo, D.L. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J. Natl. Cancer Inst., 1996, 88(11), 747-753.
[http://dx.doi.org/10.1093/jnci/88.11.747] [PMID: 8637029]
[96]
Tang, C.H.A.; Hu, C.C.A.; Wei, C.W.; Wang, J.J. Synergism of Rana catesbeiana ribonuclease and IFN-γ triggers distinct death machineries in different human cancer cells. FEBS Lett., 2005, 579(1), 265-270.
[http://dx.doi.org/10.1016/j.febslet.2004.11.086] [PMID: 15620724]
[97]
Deptala, A.; Halicka, H.D.; Ardelt, B.; Ardelt, W.; Mikulski, S.M.; Shogen, K.; Darzynkiewicz, Z. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int. J. Oncol., 1998, 13(1), 11-16.
[http://dx.doi.org/10.3892/ijo.13.1.11] [PMID: 9625797]
[98]
Ita, M.; Halicka, H.D.; Tanaka, T.; Kurose, A.; Ardelt, B.; Shogen, K.; Darzynkiewicz, Z. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol. Ther., 2008, 7(7), 1104-1108.
[http://dx.doi.org/10.4161/cbt.7.7.6172] [PMID: 18443430]
[99]
Lee, J.E.; Bae, E.; Bingman, C.A.; Phillips, G.N., Jr; Raines, R.T. Structural basis for catalysis by onconase. J. Mol. Biol., 2008, 375(1), 165-177.
[http://dx.doi.org/10.1016/j.jmb.2007.09.089] [PMID: 18001769]
[100]
Ranpirnase: Amphibian ribonuclease A, P-30 protein-alfacell. Drugs R D., 2007, 8(2), 120-124.
[http://dx.doi.org/10.2165/00126839-200708020-00007] [PMID: 17324010]
[101]
Vasandani, V.M.; Wu, Y.N.; Mikulski, S.M.; Youle, R.J.; Sung, C. Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Cancer Res., 1996, 56(18), 4180-4186.
[PMID: 8797589]