Research Advancements on Fluorinated and Non-Fluorinated 4- Phenyl(thio)ureido-Substituted 2,2-Dimethylchromans Acting as Inhibitors of Insulin Release and Smooth Muscle Relaxants

Page: [884 - 894] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aims: The present study aimed at characterizing the impact of the presence or absence of fluorine atoms on the phenyl and benzopyran rings of 4-phenyl(thio)ureido-substituted 2,2- dimethylchromans on their ability to inhibit insulin release from pancreatic β-cells or to relax vascular smooth muscle cells.

Methods: Most compounds were found to inhibit insulin secretion and to provoke a marked myorelaxant activity.

Results: The lack of a fluorine or chlorine atom at the 6-position of the 2,2-dimethylchroman core structure reduced the inhibitory activity on the pancreatic endocrine tissue. One of the most active compounds on both tissues, compound 11h (BPDZ 678), was selected for further pharmacological investigations.

Conclusion: The biological data suggested that 11h mainly expressed the profile of a KATP channel opener on pancreatic β-cells, although a calcium entry blockade effect was also observed. On vascular smooth muscle cells, 11h behaved as a calcium entry blocker.

Keywords: 2, 2-Dimethylchromans, potassium channel openers, calcium channel blockers, insulin secretion, smooth muscle contractile activity, fluorine atoms impact.

Graphical Abstract

[1]
Zheng, Y.; Zhao, B.; Lu, C.; Lin, X.; Zheng, Z.; Su, W. Isolation, structure elucidation and apoptosis-inducing activity of new compounds from the edible fungus Lentinus striguellus. Nat. Prod. Commun., 2009, 4(4), 501-506.
[http://dx.doi.org/10.1177/1934578X0900400411 ] [PMID: 19475993]
[2]
Li, S-G.; Tian, H-Y.; Ye, W-C.; Jiang, R-W. Benzopyrans and furoquinoline alkaloids from Melicope pteleifolia. Biochem. Syst. Ecol., 2011, 39, 64-67.
[http://dx.doi.org/10.1016/j.bse.2011.01.005]
[3]
Fobofou, S.A.T.; Franke, K.; Porzel, A.; Brandt, W.; Wessjohann, L.A. Tricyclic acylphloroglucinols from Hypericum lanceolatum and regioselective synthesis of selancins A and B. J. Nat. Prod., 2016, 79(4), 743-753.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00673 ] [PMID: 26950610]
[4]
Reilly, R.M.; McDonald, H.A.; Puttfarcken, P.S.; Joshi, S.K.; Lewis, L.; Pai, M.; Franklin, P.H.; Segreti, J.A.; Neelands, T.R.; Han, P.; Chen, J.; Mantyh, P.W.; Ghilardi, J.R.; Turner, T.M.; Voight, E.A.; Daanen, J.F.; Schmidt, R.G.; Gomtsyan, A.; Kort, M.E.; Faltynek, C.R.; Kym, P.R. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature. J. Pharmacol. Exp. Ther., 2012, 342(2), 416-428.
[http://dx.doi.org/10.1124/jpet.111.190314 ] [PMID: 22570364]
[5]
Voight, E.A.; Gomtsyan, A.R.; Daanen, J.F.; Perner, R.J.; Schmidt, R.G.; Bayburt, E.K.; DiDomenico, S.; McDonald, H.A.; Puttfarcken, P.S.; Chen, J.; Neelands, T.R.; Bianchi, B.R.; Han, P.; Reilly, R.M.; Franklin, P.H.; Segreti, J.A.; Nelson, R.A.; Su, Z.; King, A.J.; Polakow-ski, J.S.; Baker, S.J.; Gauvin, D.M.; Lewis, L.R.; Mikusa, J.P.; Joshi, S.K.; Faltynek, C.R.; Kym, P.R.; Kort, M.E. Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): A temperature-neutral Transient Receptor Potential Vanilloid-1 (TRPV1) antagonist with analgesic efficacy. J. Med. Chem., 2014, 57(17), 7412-7424.
[http://dx.doi.org/10.1021/jm500916t ] [PMID: 25100568]
[6]
Hunt, K.W.; Cook, A.W.; Watts, R.J.; Clark, C.T.; Vigers, G.; Smith, D.; Metcalf, A.T.; Gunawardana, I.W.; Burkard, M.; Cox, A.A.; Geck Do, M.K.; Dutcher, D.; Thomas, A.A.; Rana, S.; Kallan, N.C.; DeLisle, R.K.; Rizzi, J.P.; Regal, K.; Sammond, D.; Groneberg, R.; Siu, M.; Purkey, H.; Lyssikatos, J.P.; Marlow, A.; Liu, X.; Tang, T.P. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) in-hibitors: From hit to lowering of Cerebrospinal Fluid (CSF) amyloid β in a higher species. J. Med. Chem., 2013, 56(8), 3379-3403.
[http://dx.doi.org/10.1021/jm4002154 ] [PMID: 23537249]
[7]
Dhawan, A.; Balwani, S.; Prasad, A.K.; Ghosh, B.; Parmar, V.S. Synthesis and evaluation of 2,2-dimethylchroman derivatives as inhibi-tors of ICAM-1 expression on human endothelial cells. J. Heterocycl. Chem., 2014, 51, 1712-1719.
[http://dx.doi.org/10.1002/jhet.1860]
[8]
Ng, R.A.; Sun, M.; Bowers, S.; Hom, R.K.; Probst, G.D.; John, V.; Fang, L.Y.; Maillard, M.; Gailunas, A.; Brogley, L.; Neitz, R.J.; Tung, J.S.; Pleiss, M.A.; Konradi, A.W.; Sham, H.L.; Dappen, M.S.; Adler, M.; Yao, N.; Zmolek, W.; Nakamura, D.; Quinn, K.P.; Sauer, J.M.; Bova, M.P.; Ruslim, L.; Artis, D.R.; Yednock, T.A. Design and synthesis of hydroxyethylamine (HEA) BACE-1 inhibitors: Prime side chromane-containing inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(16), 4674-4679.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.006 ] [PMID: 23856050]
[9]
Wang, X.; Liu, B.; Searle, X.; Yeung, C.; Bogdan, A.; Greszler, S.; Singh, A.; Fan, Y.; Swensen, A.M.; Vortherms, T.; Balut, C.; Jia, Y.; Desino, K.; Gao, W.; Yong, H.; Tse, C.; Kym, P. Discovery of 4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)-7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic Acid (ABBV/GLPG-2222), a potent Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) corrector for the treatment of cystic fibrosis. J. Med. Chem., 2018, 61, 1436-1449.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01339 ] [PMID: 29251932]
[10]
Sebille, S.; De Tullio, P.; Boverie, S.; Antoine, M-H.; Lebrun, P.; Pirotte, B. Recent developments in the chemistry of potassium channel activators: The cromakalim analogs. Curr. Med. Chem., 2004, 11(9), 1213-1222.
[http://dx.doi.org/10.2174/0929867043365378 ] [PMID: 15134515]
[11]
Coghlan, M.J.; Carroll, W.A.; Gopalakrishnan, M. Recent developments in the biology and medicinal chemistry of potassium channel modulators: Update from a decade of progress. J. Med. Chem., 2001, 44(11), 1627-1653.
[http://dx.doi.org/10.1021/jm000484+ ] [PMID: 11356099]
[12]
Mannhold, R. KATP channel openers: Structure-activity relationships and therapeutic potential. Med. Res. Rev., 2004, 24(2), 213-266.
[http://dx.doi.org/10.1002/med.10060 ] [PMID: 14705169]
[13]
Mannhold, R. Structure-activity relationships of K(ATP) channel openers. Curr. Top. Med. Chem., 2006, 6(10), 1031-1047.
[http://dx.doi.org/10.2174/156802606777323647 ] [PMID: 16787278]
[14]
Cecchetti, V.; Tabarrini, O.; Sabatini, S. From cromakalim to different structural classes of K(ATP) channel openers. Curr. Top. Med. Chem., 2006, 6(10), 1049-1068.
[http://dx.doi.org/10.2174/156802606777323683 ] [PMID: 16787279]
[15]
Zhang, X.; Zhao, J.; Kang, S.; Yi, M.; You, S.; Shin, D-S.; Kim, D-K. A novel cromakalim analogue induces cell cycle arrest and apoptosis in human cervical carcinoma HeLa cells through the caspase- and mitochondria-dependent pathway. Int. J. Oncol., 2011, 39(6), 1609-1617.
[PMID: 21833470]
[16]
Yokoshiki, H.; Sunagawa, M.; Seki, T.; Sperelakis, N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am. J. Physiol., 1998, 274(1), C25-C37.
[http://dx.doi.org/10.1152/ajpcell.1998.274.1.C25 ] [PMID: 9458709]
[17]
Quayle, J.M.; Nelson, M.T.; Standen, N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev., 1997, 77(4), 1165-1232.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1165 ] [PMID: 9354814]
[18]
Teramoto, N. Physiological roles of ATP-sensitive K+ channels in smooth muscle. J. Physiol., 2006, 572(Pt 3), 617-624.
[http://dx.doi.org/10.1113/jphysiol.2006.105973 ] [PMID: 16484295]
[19]
Cook, D.L.; Hales, C.N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature, 1984, 311(5983), 271-273.
[http://dx.doi.org/10.1038/311271a0 ] [PMID: 6090930]
[20]
Seino, S.; Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol., 2003, 81(2), 133-176.
[http://dx.doi.org/10.1016/S0079-6107(02)00053-6 ] [PMID: 12565699]
[21]
Tinker, A.; Aziz, Q.; Thomas, A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br. J. Pharmacol., 2014, 171(1), 12-23.
[http://dx.doi.org/10.1111/bph.12407 ] [PMID: 24102106]
[22]
Inagaki, N.; Seino, S. ATP-sensitive potassium channels: Structures, functions, and pathophysiology. Jpn. J. Physiol., 1998, 48(6), 397-412.
[http://dx.doi.org/10.2170/jjphysiol.48.397 ] [PMID: 10021494]
[23]
Ashcroft, S.J. The beta-cell K(ATP) channel. J. Membr. Biol., 2000, 176(3), 187-206.
[PMID: 10931971]
[24]
Sebille, S.; Gall, D.; de Tullio, P.; Florence, X.; Lebrun, P.; Pirotte, B. Design, synthesis, and pharmacological evaluation of R/S-3,4-dihydro-2,2-dimethyl- 6-halo-4-(phenylaminocarbonylamino)-2H-1-benzopyrans: Toward tissue-selective pancreatic beta-cell KATP channel openers structurally related to (+/-)-cromakalim. J. Med. Chem., 2006, 49(15), 4690-4697.
[http://dx.doi.org/10.1021/jm060161z ] [PMID: 16854075]
[25]
Sebille, S.; de Tullio, P.; Florence, X.; Becker, B.; Antoine, M-H.; Michaux, C.; Wouters, J.; Pirotte, B.; Lebrun, P. New R/S-3,4-dihydro-2,2-dimethyl-6-halo-4-(phenylaminothiocarbonylamino)-2H-1-benzopyrans structurally related to (+/-)-cromakalim as tissue-selective pancreatic beta-cell K(ATP) channel openers. Bioorg. Med. Chem., 2008, 16(10), 5704-5719.
[http://dx.doi.org/10.1016/j.bmc.2008.03.065 ] [PMID: 18406154]
[26]
Florence, X.; Sebille, S.; Tullio, Pd.; Lebrun, P.; Pirotte, B. New R/S-3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans as K(ATP) channel openers: Modulation of the 4-position. Bioorg. Med. Chem., 2009, 17(22), 7723-7731.
[http://dx.doi.org/10.1016/j.bmc.2009.09.041 ] [PMID: 19822435]
[27]
Florence, X.; Desvaux, V.; Goffin, E.; de Tullio, P.; Pirotte, B.; Lebrun, P. Influence of the alkylsulfonylamino substituent located at the 6-position of 2,2-dimethylchromans structurally related to cromakalim: From potassium channel openers to calcium entry blockers? Eur. J. Med. Chem., 2014, 80, 36-46.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.024 ] [PMID: 24763361]
[28]
Pirotte, B.; Florence, X.; Goffin, E.; Medeiros, M.B.; de Tullio, P.; Lebrun, P. 4-Phenylureido/thioureido-substituted 2,2-dimethylchroman analogs of cromakalim bearing a bulky ‘carbamate’ moiety at the 6-position as potent inhibitors of glucose-sensitive insulin secretion. Eur. J. Med. Chem., 2016, 121, 338-351.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.042 ] [PMID: 27267004]
[29]
Pirotte, B.; Florence, X.; Goffin, E.; Lebrun, P. Deciphering structure-activity relationships in a series of 2,2-dimethylchromans acting as inhibitors of insulin release and smooth muscle relaxants. ChemMedChem, 2017, 12(21), 1810-1817.
[http://dx.doi.org/10.1002/cmdc.201700409 ] [PMID: 28967705]
[30]
Pirotte, B.; Florence, X.; Goffin, E.; Lebrun, P. 2,2-Dimethyl-3,4-dihydro-2H-1,4-benzoxazines as isosteres of 2,2-dimethylchromans acting as inhibitors of insulin release and vascular smooth muscle relaxants. MedChemComm, 2019, 10(3), 431-438.
[http://dx.doi.org/10.1039/C8MD00593A ] [PMID: 31015906]
[31]
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science, 2007, 317(5846), 1881-1886.
[http://dx.doi.org/10.1126/science.1131943 ] [PMID: 17901324]
[32]
Swallow, S. Fluorine in medicinal chemistry. Prog. Med. Chem., 2015, 54, 65-133.
[http://dx.doi.org/10.1016/bs.pmch.2014.11.001 ] [PMID: 25727703]
[33]
Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258 ] [PMID: 26200936]
[34]
Lebrun, P.; Becker, B.; Morel, N.; Ghisdal, P.; Antoine, M-H.; de Tullio, P.; Pirotte, B. KATP channel openers: Tissue selectivity of origi-nal 3-alkylaminopyrido- and 3-alkylaminobenzothiadiazine 1,1-dioxides. Biochem. Pharmacol., 2008, 75(2), 468-475.
[http://dx.doi.org/10.1016/j.bcp.2007.08.032 ] [PMID: 17920043]
[35]
Lebrun, P.; Arkhammar, P.; Antoine, M-H.; Nguyen, Q-A.; Hansen, J.B.; Pirotte, B. A potent diazoxide analogue activating ATP-sensitive K+ channels and inhibiting insulin release. Diabetologia, 2000, 43(6), 723-732.
[http://dx.doi.org/10.1007/s001250051370 ] [PMID: 10907118]
[36]
Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S.; Tanchuk, V.Y.; Prokopenko, V.V. Virtual computational chemistry laboratory--design and description. J. Comput. Aided Mol. Des., 2005, 19(6), 453-463.
[http://dx.doi.org/10.1007/s10822-005-8694-y ] [PMID: 16231203]