Synthesis, Anticancer Activities, and Mechanism of N-heptyl-containing Biguanide Derivatives

Page: [895 - 902] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: In recent years, the anticancer effects of biguanide drugs have received considerable attention. However, the effective concentration of biguanide drugs to kill cancer cells is relatively high. Thus, we focus on structural modification of biguanides to obtain better antitumor candidates. A previous study in our laboratory has found that a biguanide compound containing the n-heptyl group has potent anticancer activity. However, the effect of different substituents on the benzene ringside of the biguanides on the anti-proliferative activity is unknown.

Objective: A series of n-heptyl-containing biguanide derivatives whose benzene rings were modified by halogen substitution based on the intermediate derivatization method were further synthesized to find new compounds with improved antiproliferative activities.

Methods: Ten n-heptyl-containing biguanide derivatives were synthesized via established chemical procedures. The activities of these derivatives were explored by MTT assay, clonogenic assay, and scratch assay. The protein levels were detected via Western blotting to explore the underlying mechanisms.

Results: The optimal biguanide derivatives 10a-10c, 11d exhibited IC50 values of 2.21-9.59 μΜ for five human cancer cell lines, significantly better than the control drug proguanil. The results of clonogenic and scratch wound healing assays also confirmed the inhibitory effects of derivatives 10a- 10c, 11d on the proliferation and migration of human cancer cell lines. Western blot results demonstrated that one representative derivative, 10c upregulates the AMPK signal pathway and downregulates mTOR/4EBP1/p70S6K.

Conclusion: All biguanide derivatives containing n-heptyl groups are more active than proguanil, indicating that the modification of n-heptyl-containing biguanide derivatives provides a novel approach for the development of novel high efficient antitumor drugs.

Keywords: Biguanides, anticancer activity, AMPK, cancer cell lines, MTT assay, halogen-containing compounds.

Graphical Abstract

[1]
Dehmel, M.; Vass, V.; Prock, L.; Görls, H.; Kretschmer, R. Synthesis and coordination chemistry of 3,4-ethylene-bridged 1,1,2,5-tetrasubstituted biguanides. Inorg. Chem., 2020, 59(5), 2733-2746.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03093] [PMID: 32048512]
[2]
Aboyans, V.; Sattar, N. Type-2 diabetes patients at high risk for cardiovascular events: Time to challenge the ‘metformin-always first’ paradigm. Eur. J. Prev. Cardiol., 2021, 28(1), 66-68.
[http://dx.doi.org/10.1093/eurjpc/zwaa157] [PMID: 33580794]
[3]
Chen, D.; Jia, D.; Wu, X.; Shi, K.; Ren, C.; Dou, Y.; Guo, M.; Wang, J.; Ma, M.; Wu, Z.; Shi, H.Y.; Li, W.; Feng, Y.; Wu, F. A novel met-formin derivative showed improvement of lipid metabolism in obese rats with type 2 diabetes. Clin. Exp. Pharmacol. Physiol., 2020, 47(8), 1382-1392.
[http://dx.doi.org/10.1111/1440-1681.13302] [PMID: 32155673]
[4]
Hansen, C.S.; Lundby-Christiansen, L.; Tarnow, L.; Gluud, C.; Hedetoft, C.; Thorsteinsson, B.; Hemmingsen, B.; Wiinberg, N.; Sneppen, S.B.; Lund, S.S.; Krarup, T.; Madsbad, S.; Almdal, T.; Carstensen, B.; Jørgensen, M.E. CIMT study group. Metformin may adversely af-fect orthostatic blood pressure recovery in patients with type 2 diabetes: Substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc. Diabetol., 2020, 19(1), 150.
[http://dx.doi.org/10.1186/s12933-020-01131-3] [PMID: 32979921]
[5]
Deng, J.; Peng, M.; Wang, Z.; Zhou, S.; Xiao, D.; Deng, J.; Yang, X.; Peng, J.; Yang, X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci., 2019, 110(1), 23-30.
[http://dx.doi.org/10.1111/cas.13849] [PMID: 30358009]
[6]
Bland, A.R.; Shrestha, N.; Bower, R.L.; Rosengren, R.J.; Ashton, J.C. The effect of metformin in EML4-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models. Biochem. Pharmacol., 2021, 183, 114345.
[http://dx.doi.org/10.1016/j.bcp.2020.114345] [PMID: 33227290]
[7]
Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. Metformin and cancer immunity. Acta Pharmacol. Sin., 2020, 41(11), 1403-1409.
[http://dx.doi.org/10.1038/s41401-020-00508-0] [PMID: 32868904]
[8]
Chae, Y.K.; Arya, A.; Malecek, M.K.; Shin, D.S.; Carneiro, B.; Chandra, S.; Kaplan, J.; Kalyan, A.; Altman, J.K.; Platanias, L.; Giles, F. Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget, 2016, 7(26), 40767-40780.
[http://dx.doi.org/10.18632/oncotarget.8194] [PMID: 27004404]
[9]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 2009, 339, b2700.
[http://dx.doi.org/10.1136/bmj.b2700] [PMID: 19622552]
[10]
Lea, M.A.; Kim, H. desBORDES, C. Effects of biguanides on growth and glycolysis of bladder and colon cancer cells. Anticancer Res., 2018, 38(9), 5003-5011.
[http://dx.doi.org/10.21873/anticanres.12819] [PMID: 30194144]
[11]
Zhou, S.; Xu, L.; Cao, M.; Wang, Z.; Xiao, D.; Xu, S.; Deng, J.; Hu, X.; He, C.; Tao, T.; Wang, W.; Guan, A.; Yang, X. Anticancer proper-ties of novel pyrazole-containing biguanide derivatives with activating the adenosine monophosphate-activated protein kinase signaling pathway. Arch. Pharm. (Weinheim), 2019, 352(9), e1900075.
[http://dx.doi.org/10.1002/ardp.201900075] [PMID: 31339189]
[12]
Huang, Y.; Zhou, S.; He, C.; Deng, J.; Tao, T.; Su, Q.; Darko, K.O.; Peng, M.; Yang, X. Phenformin alone or combined with gefitinib inhib-its bladder cancer via AMPK and EGFR pathways. Cancer Commun. (Lond.), 2018, 38(1), 50.
[http://dx.doi.org/10.1186/s40880-018-0319-7] [PMID: 30053908]
[13]
Hébert, A.; Parisotto, M.; Rowell, M.C.; Doré, A.; Fernandez Ruiz, A.; Lefrançois, G.; Kalegari, P.; Ferbeyre, G.; Schmitzer, A.R. Phe-nylethynylbenzyl-modified biguanides inhibit pancreatic cancer tumor growth. Sci. Rep., 2021, 11(1), 9854.
[http://dx.doi.org/10.1038/s41598-021-87993-3] [PMID: 33972583]
[14]
Zhao, H.; Swanson, K.D.; Zheng, B. Therapeutic repurposing of biguanides in cancer. Trends Cancer, 2021, 7(8), 714-730.
[http://dx.doi.org/10.1016/j.trecan.2021.03.001] [PMID: 33865798]
[15]
Xiao, D.; Lu, Z.; Wang, Z.; Zhou, S.; Cao, M.; Deng, J.; Hu, X.; Peng, M.; He, C.; Wu, J.; Xu, S.; Zhang, H.; Xu, C.; Wang, W.; Guan, A.; Yang, X. Synthesis, biological evaluation and anti-proliferative mechanism of fluorine-containing proguanil derivatives. Bioorg. Med. Chem., 2020, 28(2), 115258.
[http://dx.doi.org/10.1016/j.bmc.2019.115258] [PMID: 31864776]
[16]
Xu, S.; Cao, Y.; Luo, Y.; Xiao, D.; Wang, W.; Wang, Z.; Yang, X. Synthesis, anti-proliferative evaluation and mechanism of 4-trifluoro methoxy proguanil derivatives with various carbon chain length. Molecules, 2021, 26(19), 5775.
[http://dx.doi.org/10.3390/molecules26195775] [PMID: 34641319]
[17]
Guan, A.; Liu, C.; Yang, X.; Dekeyser, M. Application of the intermediate derivatization approach in agrochemical discovery. Chem. Rev., 2014, 114(14), 7079-7107.
[http://dx.doi.org/10.1021/cr4005605] [PMID: 24869800]
[18]
Sathe, D.G.; Mondkar, H.K.; Jadhav, T.S.; Hagavane, N.N. Process for preparation of proguanil hydrochloride. EP Patent 2150528A2 2010.
[19]
Loesche, A.; Wiese, J.; Sommerwerk, S.; Simon, V.; Brandt, W.; Csuk, R.; Repurposing, N.; Repurposing, N. N'-bis-(arylamidino)-1,4-piperazinedicarboxamidines: An unexpected class of potent inhibitors of cholinesterases. Eur. J. Med. Chem., 2017, 125, 430-434.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.051] [PMID: 27689726]
[20]
Cork, G.K.; Thompson, J.; Slawson, C. Real talk: The inter-play between the mTOR, AMPK, and hexosamine biosynthetic pathways in cell signaling. Front. Endocrinol. (Lausanne), 2018, 9, 522.
[http://dx.doi.org/10.3389/fendo.2018.00522] [PMID: 30237786]
[21]
Cao, C.; Han, D.; Su, Y.; Ge, Y.; Chen, H.; Xu, A. Ginkgo biloba exocarp extracts induces autophagy in Lewis lung cancer cells involving AMPK/mTOR/p70S6k signaling pathway. Biomed. Pharmacother., 2017, 93, 1128-1135.
[http://dx.doi.org/10.1016/j.biopha.2017.07.036] [PMID: 28738521]
[22]
Wei, Q.; Zhang, B.; Li, P.; Wen, X.; Yang, J. Maslinic acid inhibits colon tumorigenesis by the AMPK-mTOR signaling pathway. J. Agric. Food Chem., 2019, 67(15), 4259-4272.
[http://dx.doi.org/10.1021/acs.jafc.9b00170] [PMID: 30913881]
[23]
Vazirian, M.; Nabavi, S.M.; Jafari, S.; Manayi, A. Natural activators of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem. Toxicol., 2018, 122, 69-79.
[http://dx.doi.org/10.1016/j.fct.2018.09.079] [PMID: 30290216]