Combinatorial Chemistry & High Throughput Screening

Author(s): Jianwei Xiao, Rongsheng Wang, Xu Cai, Xinmin Huang and Zhizhong Ye*

DOI: 10.2174/1386207325666220207105559

Mechanism of Action of Ermiao San on Rheumatoid Arthritis Based on Bioinformatics and Molecular Dynamics

Page: [2153 - 2164] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Ermiao San, one of the Chinese medicine formulas, has been widely used to treat rheumatoid arthritis (RA). Our previous study has demonstrated that Ermiao San is effective in treating RA. However, its pharmacological mechanisms remain unclear. Therefore, the purpose of this study was to decipher the potential mechanism of action of Ermiao San in rheumatoid arthritis (RA) by bioinformatics, network pharmacology, molecular docking, and molecular dynamics.

Methods: Gene expression data (GSE77298) were obtained from the GEO database. Differentially expressed genes (DEGs) were analyzed by R. The active ingredients of Huangbai (Phellodendron) and Cangshu (Atractylodes), two main constituents of Ermiao San, and their predicted target genes were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the overlapping genes between DEGs of the RA dataset and the predicted target genes of Ermiao San. The gene-gene interaction network was analyzed and visualized by Cytoscape. Molecular docking and dynamics simulations were performed to study the interaction between selected target genes (Chemokine ligand 2 (CCL2) and matrix metalloproteinase 1 (MMP1)) and active ingredients (quercetin and wogonin) of Ermiao San.

Results: A total of 16 potential targets for Ermiao San were identified, with significantly enriched GO terms, such as cytokine-mediated signaling pathways, oxidoreductase activity, cell space, etc., and IL-17 signaling pathway, rheumatoid arthritis pathway, and NF-κB signaling pathway were identified as enriched pathways through KEGG analysis. CCL2 and MMP1 were identified and verified to be the targets of both quercetin and wogonin, the two active ingredients of Ermiao San, by molecular docking and molecular dynamics.

Conclusion: Ermiao San may target CCL2 and MMP1 via its active ingredients by exerting therapeutic effects on RA.

Keywords: Rheumatoid arthritis, molecular docking, molecular dynamics, Ermiao San, bioinformatics analysis, network pharmacology.

Graphical Abstract

[1]
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet, 2016, 388(10055), 2023-2038. published correction appears in Lancet. 2016 Oct 22;388(10055):1984
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[2]
Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet, 2017, 389(10086), 2338-2348.
[http://dx.doi.org/10.1016/S0140-6736(17)31491-5] [PMID: 28612748]
[3]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[4]
Schenone, M.; Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol., 2013, 9(4), 232-240.
[http://dx.doi.org/10.1038/nchembio.1199] [PMID: 23508189]
[5]
Lv, C.; Wu, X.; Wang, X.; Su, J.; Zeng, H.; Zhao, J.; Lin, S.; Liu, R.; Li, H.; Li, X.; Zhang, W. The gene expression profiles in response to 102 Traditional Chinese Medicine (TCM) components: A general template for research on TCMs. Sci. Rep., 2017, 7(1), 352.
[http://dx.doi.org/10.1038/s41598-017-00535-8] [PMID: 28336967]
[6]
Zhang, Z-S. Clinical observation on modified xuanbitang and ermiaosan in treating rheumatoid arthritis. Western J. Traditional Chinese Medicine, 2012, 25(8), 77-78.
[7]
Li, Z.; Liu, J.; Hao, H.Q.; Gao, Y.T.; Wang, Z. Chinese herbal formula ermiao powder () regulates cholinergic anti-inflammatory pathway in rats with rheumatoid arthritis. Chin. J. Integr. Med., 2020, 26(12), 905-912.
[http://dx.doi.org/10.1007/s11655-020-3471-2] [PMID: 33259023]
[8]
Chen, G.; Li, K.K.; Fung, C.H.; Liu, C.L.; Wong, H.L.; Leung, P.C.; Ko, C.H. Er-Miao-San, a traditional herbal formula containing Rhizoma Atractylodis and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway and MAPKs activation. J. Ethnopharmacol., 2014, 154(3), 711-718.
[http://dx.doi.org/10.1016/j.jep.2014.04.042] [PMID: 24815219]
[9]
Lam, F.F.; Ko, I.W.; Ng, E.S.; Tam, L.S.; Leung, P.C.; Li, E.K. Analgesic and anti-arthritic effects of Lingzhi and San Miao San supplementation in a rat model of arthritis induced by Freund’s complete adjuvant. J. Ethnopharmacol., 2008, 120(1), 44-50.
[http://dx.doi.org/10.1016/j.jep.2008.07.028] [PMID: 18708134]
[10]
Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery. Front. Pharmacol., 2019, 10, 743.
[http://dx.doi.org/10.3389/fphar.2019.00743] [PMID: 31379563]
[11]
Chen, L.; Lv, D.; Wang, D.; Chen, X.; Zhu, Z.; Cao, Y.; Chai, Y. A novel strategy of profiling the mechanism of herbal medicines by combining network pharmacology with plasma concentration determination and affinity constant measurement. Mol. Biosyst., 2016, 12(11), 3347-3356.
[http://dx.doi.org/10.1039/C6MB00500D] [PMID: 27754507]
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Cheminformatics, 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13]
[13]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[14]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[15]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[16]
The pymol molecular graphics system. World Wide Web, 2002. Available from: http://www.pymol.org
[17]
Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta, 2016, 455, 161-171.
[http://dx.doi.org/10.1016/j.cca.2016.02.010] [PMID: 26883280]
[18]
Matsuno, H.; Yudoh, K.; Katayama, R.; Nakazawa, F.; Uzuki, M.; Sawai, T.; Yonezawa, T.; Saeki, Y.; Panayi, G.S.; Pitzalis, C.; Kimura, T. The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): A study using a human RA/SCID mouse chimera. Rheumatology (Oxford), 2002, 41(3), 329-337.
[http://dx.doi.org/10.1093/rheumatology/41.3.329] [PMID: 11934972]
[19]
Pickens, S.R.; Volin, M.V.; Mandelin, A.M., II; Kolls, J.K.; Pope, R.M.; Shahrara, S. IL-17 contributes to angiogenesis in rheumatoid arthritis. J. Immunol., 2010, 184(6), 3233-3241.
[http://dx.doi.org/10.4049/jimmunol.0903271] [PMID: 20173024]
[20]
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation, 2012, 35(4), 1585-1594.
[http://dx.doi.org/10.1007/s10753-012-9473-2] [PMID: 22592909]
[21]
Pan, F.; Zhu, L.; Lv, H.; Pei, C. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. Int. J. Mol. Med., 2016, 38(5), 1507-1514.
[http://dx.doi.org/10.3892/ijmm.2016.2755] [PMID: 28026003]
[22]
Li, L.; Lin, S.; Zhang, D.; Xie, H.; Wei, Z. Quercetin restores Th17/Treg balance and activates heme oxygenase 1 mediated antiinflammatory effect on the mechanism of reducing acute laryngitis. Hebei Med. J., 2020, 42, 2730-2734.
[23]
Li, man.; Huang, shaofang.; Wu, zian. In vitro study of the effect of baicalin on fibroblast-like synoviocytes and interleukin 6 expression in rheumatoid arthritis. Hebei J. TCM, 2018, 40(5), 746-749.
[24]
Wang, H.; Meng, Q.; Li, S. Wogonin induces apoptosis of fibroblast- like synoviocytes via reactive oxygen species-dependent activation of p38 mitogen-activated protein kinase in rheumatoid arthritis. Zhongguo Guzhi Shusong Zazhi, 2017, 23(7), 890-895.
[25]
Huang, Y.; Guo, L.; Chitti, R.; Sreeharsha, N.; Mishra, A.; Gubbiyappa, S.K.; Singh, Y. Wogonin ameliorate complete freund’s adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway. Biofactors, 2020, 46(2), 283-291.
[http://dx.doi.org/10.1002/biof.1585] [PMID: 31721330]
[26]
Dawson, J.; Miltz, W.; Mir, A.K.; Wiessner, C. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opin. Ther. Targets, 2003, 7(1), 35-48.
[http://dx.doi.org/10.1517/14728222.7.1.35] [PMID: 12556201]
[27]
Kawano, S.; Nakamachi, Y. MiR-124a as a key regulator of proliferation and MCP-1 secretion in synoviocytes from patients with rheumatoid arthritis. Ann. Rheum. Dis., 2011, 70, 88-91.
[http://dx.doi.org/10.1136/ard.2010.138669]
[28]
Conti, P.; Reale, M.; Barbacane, R.C.; Castellani, M.L.; Orso, C. Differential production of RANTES and MCP-1 in synovial fluid from the inflamed human knee. Immunol. Lett., 2002, 80(2), 105-111.
[http://dx.doi.org/10.1016/S0165-2478(01)00303-0] [PMID: 11750041]
[29]
Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis., 2000, 59(6), 455-461.
[http://dx.doi.org/10.1136/ard.59.6.455] [PMID: 10834863]
[30]
Miller, M.C.; Manning, H.B.; Jain, A.; Troeberg, L.; Dudhia, J.; Essex, D.; Sandison, A.; Seiki, M.; Nanchahal, J.; Nagase, H.; Itoh, Y. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum., 2009, 60(3), 686-697.
[http://dx.doi.org/10.1002/art.24331] [PMID: 19248098]
[31]
Tolboom, T.C.; Pieterman, E.; van der Laan, W.H.; Toes, R.E.; Huidekoper, A.L.; Nelissen, R.G.; Breedveld, F.C.; Huizinga, T.W.; Nanchahal, J.; Nagase, H.; Itoh, Y. Invasive properties of fibroblast-like synoviocytes: Correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis., 2002, 61(11), 975-980.
[http://dx.doi.org/10.1136/ard.61.11.975] [PMID: 12379519]
[32]
Boyle, D.L.; Soma, K.; Hodge, J.; Kavanaugh, A.; Mandel, D.; Mease, P.; Shurmur, R.; Singhal, A.K.; Wei, N.; Rosengren, S.; Kaplan, I.; Krishnaswami, S.; Luo, Z.; Bradley, J.; Firestein, G.S. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis., 2015, 74(6), 1311-1316.
[http://dx.doi.org/10.1136/annrheumdis-2014-206028] [PMID: 25398374]
[33]
Catrina, A.I.; Lampa, J.; Ernestam, S.; af Klint, E.; Bratt, J.; Klareskog, L.; Ulfgren, A.K. Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford), 2002, 41(5), 484-489.
[http://dx.doi.org/10.1093/rheumatology/41.5.484] [PMID: 12011369]
[34]
Du, F.; Lü, L.J.; Teng, J.L.; Shen, N.; Ye, P.; Bao, C.D. T-614 alters the production of matrix metalloproteinases (MMP-1 andMMP-3) and inhibits the migratory expansion of rheumatoid synovial fibroblasts, in vitro . Int. Immunopharmacol., 2012, 13(1), 54-60.
[http://dx.doi.org/10.1016/j.intimp.2012.03.003] [PMID: 22446297]