Combinatorial Synthesis of Sulfonate Derivatives of α/β-Naphthol as Anti- Oomycete Agents

Page: [2026 - 2032] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Developing new, efficient, and environment-friendly small molecule fungicides is the key to effectively prevent and control plant pathogenic oomycetes. α/β-Naphthol is an important raw material for drug synthesis. Due to its special structure, α/β-naphthol and its analogs possess significant biological activity. The preparation and anti-oomycete activity of novel sulfonate derivatives based on α/β-naphthol against Phytophthora capsici have not been reported yet.

Methods: Thirty-two sulfonate derivatives of α/β-naphthol (4a-p and 5a-p) were prepared. The structure of all title compounds was identified by 1H NMR, MS, and m.p. The anti-oomycete activity of 4a-p and 5a-p against P. capsici was determined using the mycelial growth rate method.

Results: With our ongoing research aimed at the discovery and development of fungicidal agents, 4a-p and 5a-p were designed and synthesized, and their anti-oomycete activity against P. capsici was evaluated in vitro. Two compounds 4a and 5a were found to have good anti-oomycete activity against P. capsici, and their corresponding EC50 values were 63.41 and 65.21 mg/L, respectively.

Conclusion: It has been observed that the substituent R in these derivatives is aliphatic, which is very important for maintaining their anti-oomycete activity. The results lay a foundation for further design and development of sulfonate derivatives of α/β-naphthol as fungicidal agents. The structure- fungicidal activity relationship of α/β-naphthol derivatives is under investigation in our laboratory.

Keywords: α-naphthol, β-naphthol, sulfonyloxy, Phytophthora capsici, fungicidal activity, fungicides.

Graphical Abstract

[1]
Lamour, K.H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol., 2012, 13(4), 329-337.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00754.x] [PMID: 22013895]
[2]
Pais, M.; Win, J.; Yoshida, K.; Etherington, G.J.; Cano, L.M.; Raffaele, S.; Banfield, M.J.; Jones, A.; Kamoun, S.; Saunders, D.G.O. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol., 2013, 14(6), 211.
[http://dx.doi.org/10.1186/gb-2013-14-6-211] [PMID: 23809564]
[3]
Leonian, L.H. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology, 1922, 12(9), 400-408.
[4]
Hausbeck, M.K.; Lamour, K.H. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis., 2004, 88(12), 1292-1303.
[http://dx.doi.org/10.1094/PDIS.2004.88.12.1292] [PMID: 30795189]
[5]
Bozkurt, T.O.; Schornack, S.; Banfield, M.J.; Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol., 2012, 15(4), 483-492.
[http://dx.doi.org/10.1016/j.pbi.2012.03.008] [PMID: 22483402]
[6]
Gevens, A.J.; Donahoo, R.S.; Lamour, K.H.; Hausbeck, M.K. Characterization of Phytophthora capsici causing foliar and pod blight of snap bean in Michigan. Plant Dis., 2008, 92(2), 201-209.
[http://dx.doi.org/10.1094/PDIS-92-2-0201] [PMID: 30769389]
[7]
Meitz, J.C.; Linde, C.C.; Thompson, A.; Langenhoven, S.; McLeod, A. Phytophthora capsici on vegetable hosts in South Africa: Distribu-tion, host range and genetic diversity. Australas. Plant Pathol., 2010, 39(5), 431-439.
[http://dx.doi.org/10.1071/AP09075]
[8]
Lamour, K.H.; Hausbeck, M.K. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici character-ized with amplified fragment length polymorphism markers. Phytopathology, 2001, 91(6), 553-557.
[http://dx.doi.org/10.1094/PHYTO.2001.91.6.553] [PMID: 18943943]
[9]
Gobena, D.; Roig, J.; Galmarini, C.; Hulvey, J.; Lamour, K. Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia, 2012, 104(1), 102-107.
[http://dx.doi.org/10.3852/11-147] [PMID: 21933926]
[10]
Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Jiang, R.H.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; Beynon, J.L.; Chapman, J.; Damasceno, C.M.; Dorrance, A.E.; Dou, D.; Dickerman, A.W.; Dubchak, I.L.; Garbelotto, M.; Gijzen, M.; Gordon, S.G.; Govers, F.; Grunwald, N.J.; Huang, W.; Ivors, K.L.; Jones, R.W.; Kamoun, S.; Krampis, K.; Lamour, K.H.; Lee, M.K.; McDonald, W.H.; Medina, M.; Meijer, H.J.; Nordberg, E.K.; Maclean, D.J.; Ospina-Giraldo, M.D.; Morris, P.F.; Phuntumart, V.; Putnam, N.H.; Rash, S.; Rose, J.K.; Sa-kihama, Y.; Salamov, A.A.; Savidor, A.; Scheuring, C.F.; Smith, B.M.; Sobral, B.W.; Terry, A.; Torto-Alalibo, T.A.; Win, J.; Xu, Z.; Zhang, H.; Grigoriev, I.V.; Rokhsar, D.S.; Boore, J.L. Phytophthora genome sequences uncover evolutionary origins and mechanisms of patho-genesis. Science, 2006, 313(5791), 1261-1266.
[http://dx.doi.org/10.1126/science.1128796] [PMID: 16946064]
[11]
Cvitanich, C.; Salcido, M.; Judelson, H.S. Concerted evolution of a tandemly arrayed family of mating-specific genes in Phytophthora analyzed through inter- and intraspecific comparisons. Mol. Genet. Genomics, 2006, 275(2), 169-184.
[http://dx.doi.org/10.1007/s00438-005-0074-8] [PMID: 16322999]
[12]
Hulvey, J.; Young, J.; Finley, L.; Lamour, K. Loss of heterozygosity in Phytophthora capsici after N-ethyl-nitrosourea mutagenesis. Mycologia, 2010, 102(1), 27-32.
[http://dx.doi.org/10.3852/09-102] [PMID: 20120225]
[13]
Hurtado-Gonzales, O.P.; Lamour, K.H. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant Pathol., 2009, 58(4), 715-722.
[http://dx.doi.org/10.1111/j.1365-3059.2009.02059.x]
[14]
Jiang, R.H.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA, 2008, 105(12), 4874-4879.
[http://dx.doi.org/10.1073/pnas.0709303105] [PMID: 18344324]
[15]
Lamour, K.H.; Hausbeck, M.K. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 2000, 90(4), 396-400.
[http://dx.doi.org/10.1094/PHYTO.2000.90.4.396] [PMID: 18944590]
[16]
Hurtado-Gonzáles, O.; Aragon-Caballero, L.; Apaza-Tapia, W.; Donahoo, R.; Lamour, K. Survival and spread of Phytophthora capsici in Coastal Peru. Phytopathology, 2008, 98(6), 688-694.
[http://dx.doi.org/10.1094/PHYTO-98-6-0688] [PMID: 18944293]
[17]
Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit. Rev. Food Sci. Nutr., 2019, 59(9), 1498-1513.
[http://dx.doi.org/10.1080/10408398.2017.1417235] [PMID: 29336595]
[18]
Tian, Y.E.; Che, Z.P.; Sun, D.; He, J.X.; Lin, X.M.; Liu, S.M. in vitro effects of five different classes of fungicides on growth and devel-opment of Botrytis cinerea isolated from tree peony in China. HortScience, 2019, 54(11), 1984-1988.
[http://dx.doi.org/10.21273/HORTSCI14431-19]
[19]
Parra, G.; Ristaino, J.B. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing phytophthora blight of bell pepper. Plant Dis., 2001, 85(10), 1069-1075.
[http://dx.doi.org/10.1094/PDIS.2001.85.10.1069] [PMID: 30823278]
[20]
Tian, Y.E.; Che, Z.P.; Sun, D.; Yang, Y.Y.; Lin, X.M.; Liu, S.M.; Liu, X.Y.; Gao, J. Resistance identification of tree peony varieties of different flowering time to gray mold pathogen Botrytis cinerea. HortScience, 2019, 54(2), 328-330.
[http://dx.doi.org/10.21273/HORTSCI13626-18]
[21]
Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci., 2007, 63(6), 524-554.
[http://dx.doi.org/10.1002/ps.1378] [PMID: 17487882]
[22]
Chen, J.; Li, Q.X.; Song, B. Chemical nematicides: Recent research progress and outlook. J. Agric. Food Chem., 2020, 68(44), 12175-12188.
[http://dx.doi.org/10.1021/acs.jafc.0c02871] [PMID: 33079521]
[23]
Bolzani, Vda. S.; Davies-Coleman, M.; Newman, D.J.; Singh, S.B. Gordon M. Cragg, D.Phil., D.Sc. (h.c.): a man for all natural products. J. Nat. Prod., 2012, 75(3), 309-310.
[http://dx.doi.org/10.1021/np201003c] [PMID: 22295942]
[24]
Jiang, Y.Q.; Ren, B.Q.; Lv, X.M.; Zhang, W.W.; Li, W.; Xu, G.Q. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1,2,3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39(4), 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[25]
Li, P.; Tian, P.; Chen, Y.; Song, X.; Xue, W.; Jin, L.; Hu, D.; Yang, S.; Song, B. Novel bisthioether derivatives containing a 1,3,4-oxadiazole moiety: design, synthesis, antibacterial and nematocidal activities. Pest Manag. Sci., 2018, 74(4), 844-852.
[http://dx.doi.org/10.1002/ps.4762] [PMID: 29024290]
[26]
Chen, J.; Yi, C.; Wang, S.; Wu, S.; Li, S.; Hu, D.; Song, B. Novel amide derivatives containing 1,3,4-thiadiazole moiety: Design, synthesis, nematocidal and antibacterial activities. Bioorg. Med. Chem. Lett., 2019, 29(10), 1203-1210.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.017] [PMID: 30902458]
[27]
Erdoğan, M.; Polat Köse, L.; Eşsiz, S.; Gülçin, İ. Synthesis and biological evaluation of some 1-naphthol derivatives as antioxidants, ace-tylcholinesterase, and carbonic anhydrase inhibitors. Arch. Pharm. (Weinheim), 2021, 354(8), e2100113.
[http://dx.doi.org/10.1002/ardp.202100113] [PMID: 34080709]
[28]
Vargas, J.A.M.; Day, D.P.; Burtoloso, A.C.B. Substituted naphthols: Preparations, applications, and reactions. Eur. J. Org. Chem., 2021, 2021(5), 741-756.
[http://dx.doi.org/10.1002/ejoc.202001132]
[29]
Kumari, S.P.; Suresh, P.; Muthukumar, V.; Ganesan, S.S. Cu/Ag mediated peroxide-free synthesis of benzoylated naphthol derivatives. Tetrahedron Lett., 2020, 61(45), 152487.
[http://dx.doi.org/10.1016/j.tetlet.2020.152487]
[30]
Ming, W.; Chen, F.; Hu, X.J.; Zhang, Z.Z.; Chang, S.Z.; Chen, R.S.; Tian, B.Z.; Zhang, J.L. Synthesis and optical properties of 1-naphthol rhodamine for deep red laser dyes. Tetrahedron, 2020, 76(39), 131420.
[http://dx.doi.org/10.1016/j.tet.2020.131420]
[31]
Akhmetova, V.R.; Bikbulatova, E.M.; Mescheryakova, E.S.; Akhmadiev, N.S.; Abdullin, M.F.; Ibragimov, A.G. Synthesis of novel N- and S-derivatives of 2-naphthol - Promising ligands for the binuclear copper complexes. Polyhedron, 2020, 187, 114678.
[http://dx.doi.org/10.1016/j.poly.2020.114678]
[32]
Che, Z.P.; Tian, Y.E.; Liu, S.M.; Cui, L.K.; Xu, J.Q.; Wei, S.L. Antifungal activities of several kinds of compounds containing hydroxyl. Agrochemicals, 2015, 54(12), 930-932.
[33]
Tian, Y.E.; Sun, D.; Yang, J.M.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. J. Asian Nat. Prod. Res., 2020, 22(6), 578-587.
[http://dx.doi.org/10.1080/10286020.2019.1608958] [PMID: 31046458]
[34]
Tian, Y.E.; Sun, D.; Han, X.X.; Yang, J.M.; Zhang, S.; Feng, N.N.; Zhu, L.N.; Xu, Z.Y.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis, anti-oomycete activity, and SAR studies of paeonol derivatives. J. Asian Nat. Prod. Res., 2021, 23(2), 138-149.
[http://dx.doi.org/10.1080/10286020.2020.1718116] [PMID: 32009450]
[35]
Chen, G.Q.; Sun, D.; Yang, J.M.; Zhang, S.; Tian, Y.E.; Che, Z.P.; Liu, S.M.; Jiang, J.; Lin, X.M. Synthesis of sulfonate derivatives of carvacrol and thymol as anti-oomycetes agents. J. Asian Nat. Prod. Res., 2021, 23(7), 692-702.
[http://dx.doi.org/10.1080/10286020.2020.1758675] [PMID: 32406756]
[36]
Che, Z.P.; Tian, Y.E.; Yang, J.M.; Liu, S.M.; Jiang, J.; Hu, M.; Chen, G.Q. Screening of insecticidal activity of podophyllotoxin analogues against Athetis dissimilis. Nat. Prod. Commun., 2019, 14(1), 117-120.
[http://dx.doi.org/10.1177/1934578X1901400131]
[37]
Che, Z.P.; Yang, J.M.; Shan, X.J.; Tian, Y.E.; Liu, S.M.; Lin, X.M.; Jiang, J.; Hu, M.; Chen, G.Q. Synthesis and insecticidal activity of sulfonate derivatives of sesamol against Mythimna separata in vivo. J. Asian Nat. Prod. Res., 2020, 22(7), 678-688.
[http://dx.doi.org/10.1080/10286020.2019.1616289] [PMID: 31120307]
[38]
Che, Z.P.; Tian, Y.E.; Liu, S.M.; Jiang, J.; Hu, M.; Chen, G.Q. Stereoselective synthesis of 4β-acyloxypodophyllotoxin derivatives as in-secticidal agents. J. Asian Nat. Prod. Res., 2019, 21(10), 1028-1041.
[http://dx.doi.org/10.1080/10286020.2018.1490275] [PMID: 29974799]
[39]
Che, Z.; Yang, J.; Sun, D.; Tian, Y.; Liu, S.; Lin, X.; Jiang, J.; Chen, G. Synthesis of novel (9S)-acyloxy derivatives of quinidine and dihy-droquinidine as insecticidal agents. Chem. Biodivers., 2020, 17(4), e1900696.
[http://dx.doi.org/10.1002/cbdv.201900696] [PMID: 32134169]
[40]
Che, Z.; Yang, J.; Sun, D.; Tian, Y.; Liu, S.; Lin, X.; Jiang, J.; Chen, G. Combinatorial synthesis of novel 9R-acyloxyquinine derivatives as insecticidal agents. Comb. Chem. High T. Scr., 2020, 23(2), 111-118.
[http://dx.doi.org/10.2174/1386207323666200120112714] [PMID: 31958039]
[41]
Che, Z.P.; Yang, J.M.; Sun, D.; Tian, Y.E.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Combinatorial synthesis of a series of paeonol-based phenylsulfonyl hydrazone derivatives as insecticidal agents. Comb. Chem. High T. Scr., 2020, 23(3), 232-238.
[http://dx.doi.org/10.2174/1386207323666200127121129] [PMID: 31985371]
[42]
Chen, G.Q.; Xia, Y.F.; Yang, J.M.; Che, Z.P.; Sun, D.; Li, S.; Tian, Y.E.; Liu, S.M.; Jiang, J.; Lin, X.M. Controlled synthesis of N, N-dimethylarylsulfonamide derivatives as nematicidal agents. J. Asian Nat. Prod. Res., 2020, 22(12), 1197-1206.
[http://dx.doi.org/10.1080/10286020.2019.1694513] [PMID: 31773971]
[43]
Xu, H.; Wang, J.J. Natural products-based insecticidal agents 5. Design, semisynthesis and insecticidal activity of novel 4′-substituted benzenesulfonate derivatives of 4-deoxypodophyllotoxin against Mythimna separata Walker in vivo. Bioorg. Med. Chem. Lett., 2010, 20(8), 2500-2502.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.108] [PMID: 20346661]
[44]
Bheeter, C.B.; Bera, J.K.; Doucet, H. Palladium-catalysed intramolecular direct arylation of 2-bromobenzenesulfonic acid derivatives. Adv. Synth. Catal., 2012, 354(18), 3533-3538.
[http://dx.doi.org/10.1002/adsc.201200793]
[45]
Zheng, D.; Yu, J.; Wu, J. Generation of sulfonyl radicals from aryldiazonium tetrafluoroborates and sulfur dioxide: The synthesis of 3-sulfonated coumarins. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 11925-11929.
[http://dx.doi.org/10.1002/anie.201607292] [PMID: 27603499]
[46]
Si, J.; Pei, Y.; Ji, P.; Zhang, X.; Xu, R.; Qiao, H.; Shen, D.; Peng, H.; Dou, D. PsGRASP, a golgi reassembly stacking protein in Phytophtho-ra sojae, is required for mycelial growth, stress responses, and plant infection. Front. Microbiol., 2021, 12, 702632.
[http://dx.doi.org/10.3389/fmicb.2021.702632] [PMID: 34305870]