Combinatorial Chemistry & High Throughput Screening

Author(s): Zhijian Wang, Xuenuo Chen and Zheng Jiang*

DOI: 10.2174/1386207325666220126104358

SLC17A2 Expression Correlates with Prognosis and Immune Infiltrates in Hepatocellular Carcinoma

Page: [2001 - 2015] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a dismal prognosis, according to updated statistics. The solute carrier family 17 member 2 (SLC17A2) has not been studied in liver cancer. Therefore, we evaluated the role of SLC17A2 in HCC by bioinformatics analysis.

Objective: The objective of the study was to explore the value of SLC17A2 in the prognosis and diagnosis of hepatocellular carcinoma.

Methods: The expression level of SLC17A2 in HCC and the clinicopathological data were analyzed based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and validated by immunohistochemical staining. In addition, the Kaplan–Meier plotter database and receiver operating characteristic (ROC) curve analysis were used to explore the prognostic and diagnostic significance. Some online databases were used to analyze the relationship between immune cell infiltration and analyze the relationship between immune cell infiltration and SLC17A2 in HCC.

Results: Multivariate Cox regression analysis showed that SLC17A2 expression was low in HCC (P < 0.05) and closely related to the clinical stage of HCC. In addition, SLC17A2 had a certain diagnostic value in HCC according to ROC curve analysis. Further biological analyses showed that SLC17A2 can regulate fatty acid metabolism, amino acid metabolism and cytochrome P450- related metabolism. Notably, we found that SLC17A2 expression was closely correlated with the infiltration of most immune cells in HCC.

Conclusion: SLC17A2 expression is low in HCC and correlates with immune infiltration, so it may serve as an independent prognostic factor for HCC.

Keywords: SLC17A2, hepatocellular carcinoma (HCC), independent prognostic factor, bioinformatics, immunohistochemical staining, immune cell infiltration.

Graphical Abstract

[1]
An, L.; Zeng, H.M.; Zheng, R.S.; Zhang, S.W.; Sun, K.X.; Zou, X.N.; Chen, R.; Wang, S.M.; Gu, X.Y.; Wei, W.W.; He, J. Liver cancer epidemiology in China, 2015. Zhonghua Zhong Liu Za Zhi, 2019, 41(10), 721-727.
[PMID: 31648492]
[2]
Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[3]
Spolverato, G.; Bagante, F.; Weiss, M.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; Shen, F.; Poultsides, G.A.; Soubrane, O.; Martel, G.; Koerkamp, B.G.; Guglielmi, A.; Itaru, E.; Pawlik, T.M. Comparative performances of the 7th and the 8th editions of the American Joint Committee on Cancer staging systems for intrahepatic cholangiocarcinoma. J. Surg. Oncol., 2017, 115(6), 696-703.
[http://dx.doi.org/10.1002/jso.24569] [PMID: 28194791]
[4]
Kang, S.H.; Hwang, S.; Lee, Y.J.; Kim, K.H.; Ahn, C.S.; Moon, D.B.; Ha, T.Y.; Song, G.W.; Jung, D.H.; Lee, S.G. Prognostic comparison of the 7th and 8th editions of the American Joint Committee on Cancer staging system for intrahepatic cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci., 2018, 25(4), 240-248.
[http://dx.doi.org/10.1002/jhbp.543] [PMID: 29450978]
[5]
Zhang, Y.; Zhang, Y.; Sun, K.; Meng, Z.; Chen, L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug develop-ment. J. Mol. Cell Biol., 2019, 11(1), 1-13.
[http://dx.doi.org/10.1093/jmcb/mjy052] [PMID: 30239845]
[6]
Bissa, B.; Beedle, A.M.; Govindarajan, R. Lysosomal solute carrier transporters gain momentum in research. Clin. Pharmacol. Ther., 2016, 100(5), 431-436.
[http://dx.doi.org/10.1002/cpt.450] [PMID: 27530302]
[7]
Song, W.; Li, D.; Tao, L.; Luo, Q.; Chen, L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm. Sin. B, 2020, 10(1), 61-78.
[http://dx.doi.org/10.1016/j.apsb.2019.12.006] [PMID: 31993307]
[8]
Ren, A.; Sun, S.; Li, S.; Chen, T.; Shu, Y.; Du, M.; Zhu, L. Genetic variants in SLC22A3 contribute to the susceptibility to colorectal can-cer. Int. J. Cancer, 2019, 145(1), 154-163.
[http://dx.doi.org/10.1002/ijc.32079] [PMID: 30561001]
[9]
El Ansari, R.; Craze, M.L.; Diez-Rodriguez, M.; Nolan, C.C.; Ellis, I.O.; Rakha, E.A.; Green, A.R. The multifunctional solute carrier 3A2 (SLC3A2) confers a poor prognosis in the highly proliferative breast cancer subtypes. Br. J. Cancer, 2018, 118(8), 1115-1122.
[http://dx.doi.org/10.1038/s41416-018-0038-5] [PMID: 29545595]
[10]
Liu, R.; Hong, R.; Wang, Y.; Gong, Y.; Yeerken, D.; Yang, D.; Li, J.; Fan, J.; Chen, J.; Zhang, W.; Zhan, Q. Defect of SLC38A3 promotes epithelial-mesenchymal transition and predicts poor prognosis in esophageal squamous cell carcinoma. Chin. J. Cancer Res., 2020, 32(5), 547-563.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.05.01] [PMID: 33223751]
[11]
Ruiz-Deya, G.; Matta, J.; Encarnación-Medina, J.; Ortiz-Sanchéz, C.; Dutil, J.; Putney, R.; Berglund, A.; Dhillon, J.; Kim, Y.; Park, J.Y. Differential DNA methylation in prostate tumors from Puerto Rican men. Int. J. Mol. Sci., 2021, 22(2), E733.
[http://dx.doi.org/10.3390/ijms22020733] [PMID: 33450964]
[12]
Bien, S.A.; Pankow, J.S.; Haessler, J.; Lu, Y.; Pankratz, N.; Rohde, R.R.; Tamuno, A.; Carlson, C.S.; Schumacher, F.R.; Bůžková, P.; Davi-glus, M.L.; Lim, U.; Fornage, M.; Fernandez-Rhodes, L.; Avilés-Santa, L.; Buyske, S.; Gross, M.D.; Graff, M.; Isasi, C.R.; Kuller, L.H.; Manson, J.E.; Matise, T.C.; Prentice, R.L.; Wilkens, L.R.; Yoneyama, S.; Loos, R.J.F.; Hindorff, L.A.; Le Marchand, L.; North, K.E.; Haiman, C.A.; Peters, U.; Kooperberg, C. Transethnic insight into the genetics of glycaemic traits: fine-mapping results from the Popula-tion Architecture using Genomics and Epidemiology (PAGE) consortium. Diabetologia, 2017, 60(12), 2384-2398.
[http://dx.doi.org/10.1007/s00125-017-4405-1] [PMID: 28905132]
[13]
Domingues, P.; González-Tablas, M.; Otero, Á.; Pascual, D.; Miranda, D.; Ruiz, L.; Sousa, P.; Ciudad, J.; Gonçalves, J.M.; Lopes, M.C.; Orfao, A.; Tabernero, M.D. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav. Immun., 2016, 53, 1-15.
[http://dx.doi.org/10.1016/j.bbi.2015.07.019] [PMID: 26216710]
[14]
Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic sys-tem. Annu. Rev. Nutr., 2001, 21, 193-230.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.193] [PMID: 11375435]
[15]
Cai, M.; Sun, X.; Wang, W.; Lian, Z.; Wu, P.; Han, S.; Chen, H.; Zhang, P. Disruption of peroxisome function leads to metabolic stress, mTOR inhibition, and lethality in liver cancer cells. Cancer Lett., 2018, 421, 82-93.
[http://dx.doi.org/10.1016/j.canlet.2018.02.021] [PMID: 29458144]
[16]
Chen, X.F.; Tian, M.X.; Sun, R.Q.; Zhang, M.L.; Zhou, L.S.; Jin, L.; Chen, L.L.; Zhou, W.J.; Duan, K.L.; Chen, Y.J.; Gao, C.; Cheng, Z.L.; Wang, F.; Zhang, J.Y.; Sun, Y.P.; Yu, H.X.; Zhao, Y.Z.; Yang, Y.; Liu, W.R.; Shi, Y.H.; Xiong, Y.; Guan, K.L.; Ye, D. SIRT5 inhibits pe-roxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep., 2018, 19(5), , e45124..
[http://dx.doi.org/10.15252/embr.201745124] [PMID: 29491006]
[17]
Langhans, B.; Nischalke, H.D.; Krämer, B.; Dold, L.; Lutz, P.; Mohr, R.; Vogt, A.; Toma, M.; Eis-Hübinger, A.M.; Nattermann, J.; Strass-burg, C.P.; Gonzalez-Carmona, M.A.; Spengler, U. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol. Immunother., 2019, 68(12), 2055-2066.
[http://dx.doi.org/10.1007/s00262-019-02427-4] [PMID: 31724091]
[18]
Kimmelman, A.C.; White, E. Autophagy and tumor metabolism. Cell Metab., 2017, 25(5), 1037-1043.
[http://dx.doi.org/10.1016/j.cmet.2017.04.004] [PMID: 28467923]
[19]
Rabinowitz, J.D.; White, E. Autophagy and metabolism. Science, 2010, 330(6009), 1344-1348.
[http://dx.doi.org/10.1126/science.1193497] [PMID: 21127245]
[20]
Pope, E.D., III; Kimbrough, E.O.; Vemireddy, L.P.; Surapaneni, P.K.; Copland, J.A., III; Mody, K. Aberrant lipid metabolism as a thera-peutic target in liver cancer. Expert Opin. Ther. Targets, 2019, 23(6), 473-483.
[http://dx.doi.org/10.1080/14728222.2019.1615883] [PMID: 31076001]
[21]
Lee, D.Y.; Kim, E.H. Therapeutic effects of amino acids in liver diseases: Current studies and future perspectives. J. Cancer Prev., 2019, 24(2), 72-78.
[http://dx.doi.org/10.15430/JCP.2019.24.2.72] [PMID: 31360687]
[22]
Ye, A.L.; Tang, Z.Y.; Liu, H.; Zhao, Q.R.; Zhu, W.N. Alteration of plasma amino acid content in primary liver cancer patients. Zhonghua Zhong Liu Za Zhi, 1987, 9(3), 190-192.
[PMID: 2834157]
[23]
Snell, K.; Weber, G. Enzymic imbalance in serine metabolism in rat hepatomas. Biochem. J., 1986, 233(2), 617-620.
[http://dx.doi.org/10.1042/bj2330617] [PMID: 3082329]
[24]
Snell, K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul., 1984, 22, 325-400.
[http://dx.doi.org/10.1016/0065-2571(84)90021-9] [PMID: 6089514]
[25]
Li, F.; Guo, Z.; Lizée, G.; Yu, H.; Wang, H.; Si, T. Clinical prognostic value of CD4+CD25+FOXP3+regulatory T cells in peripheral blood of Barcelona Clinic Liver Cancer (BCLC) stage B hepatocellular carcinoma patients. Clin. Chem. Lab. Med., 2014, 52(9), 1357-1365.
[http://dx.doi.org/10.1515/cclm-2013-0878] [PMID: 24646790]
[26]
Zhang, Q.; Lou, Y.; Bai, X.L.; Liang, T.B. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J. Gastroenterol., 2018, 24(31), 3500-3512.
[http://dx.doi.org/10.3748/wjg.v24.i31.3500] [PMID: 30131656]
[27]
Pacella, I.; Piconese, S. Immunometabolic checkpoints of treg dynamics: Adaptation to microenvironmental opportunities and challenges. Front. Immunol., 2019, 10, 1889.
[http://dx.doi.org/10.3389/fimmu.2019.01889] [PMID: 31507585]
[28]
Schietinger, A.; Philip, M.; Krisnawan, V.E.; Chiu, E.Y.; Delrow, J.J.; Basom, R.S.; Lauer, P.; Brockstedt, D.G.; Knoblaugh, S.E.; Hämmer-ling, G.J.; Schell, T.D.; Garbi, N.; Greenberg, P.D.; Tumor-Specific, T. Tumor-specific T cell dysfunction is a dynamic antigen-driven dif-ferentiation program initiated early during tumorigenesis. Immunity, 2016, 45(2), 389-401.
[http://dx.doi.org/10.1016/j.immuni.2016.07.011] [PMID: 27521269]
[29]
Ma, C.; Kesarwala, A.H.; Eggert, T.; Medina-Echeverz, J.; Kleiner, D.E.; Jin, P.; Stroncek, D.F.; Terabe, M.; Kapoor, V.; ElGindi, M.; Han, M.; Thornton, A.M.; Zhang, H.; Egger, M.; Luo, J.; Felsher, D.W.; McVicar, D.W.; Weber, A.; Heikenwalder, M.; Greten, T.F. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature, 2016, 531(7593), 253-257.
[http://dx.doi.org/10.1038/nature16969] [PMID: 26934227]
[30]
Zhang, Z.; Ma, L.; Goswami, S.; Ma, J.; Zheng, B.; Duan, M.; Liu, L.; Zhang, L.; Shi, J.; Dong, L.; Sun, Y.; Tian, L.; Gao, Q.; Zhang, X. Landscape of infiltrating B cells and their clinical significance in human hepatocellular carcinoma. OncoImmunology, 2019, 8(4), , e1571388..
[http://dx.doi.org/10.1080/2162402X.2019.1571388] [PMID: 30906667]
[31]
Sato, K.; Ito, K.; Kohara, H.; Yamaguchi, Y.; Adachi, K.; Endo, H. Negative regulation of catalase gene expression in hepatoma cells. Mol. Cell. Biol., 1992, 12(6), 2525-2533.
[PMID: 1588955]
[32]
Lee, G.; Jeong, Y.S.; Kim, D.W.; Kwak, M.J.; Koh, J.; Joo, E.W.; Lee, J.S.; Kah, S.; Sim, Y.E.; Yim, S.Y. Clinical significance of APOB inactivation in hepatocellular carcinoma. Exp. Mol. Med., 2018, 50(11), 1-12.
[http://dx.doi.org/10.1038/s12276-018-0174-2] [PMID: 30429453]
[33]
Ashida, R.; Okamura, Y.; Ohshima, K.; Kakuda, Y.; Uesaka, K.; Sugiura, T.; Ito, T.; Yamamoto, Y.; Sugino, T.; Urakami, K.; Kusuhara, M.; Yamaguchi, K. CYP3A4 Gene is a novel biomarker for predicting a poor prognosis in hepatocellular carcinoma. Cancer Genom. Pro-teom., 2017, 14(6), 445-453.
[PMID: 29109094 ]