Synthesis and Studies of Anticancer and Antimicrobial Activity of New Phenylurenyl Chalcone Derivatives

Page: [500 - 519] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Phenylurenyl chalcone structures have the potential to act as a scaffold in anticancer drug discovery.

Methods: N-Phenethyl-N'-{4-[(2E)-3-phenylprop-2-enoyl]phenyl}urea, 4/3-[(2E)-3-substitutedphenylprop-2- enoyl]phenyl}-N-phenylurea,4/3-[(2E)-3-substitutedphenyl.

prop-2-enoyl]phenyl}-N-methylphenyl urea and {4/3-[(2E)-3-substitutedphenylprop-2-enoyl]phenyl}-Nethylphenyl urea derivatives(1-35) were prepared and evaluated for their anticancer and antimicrobial activity against A-549 Hep-3B, HT-29, CF-7, PC-3, K-562 NIH-3T3 and Huh-7 cell lines and against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (ATCC 8739) and Candida albicans (ATCC 10231), respectively.

Results: While compounds 2, 26, 29, and 34 showed moderate cytotoxic activity on cell line Huh 7, compounds 14 (IC50: 6.42 μM), 16 (IC50: 5.64 μM), 19 (IC50: 6.95 μM) and 34 (IC50: 6.87 μM) showed good cytotoxic activity on Huh-7 cell line close to Sorafenib (IC50: 4.29 μM) (as reference). MIC values of compounds 4 and 22 against E. coli were 25 μg/ml, compounds 3, 14 and 29 against P. aeruginosa 25 μg/ml, and compounds 11 and 33 against S. aureus 25 μg/ml. On the other hand, the minimum inhibitory concentration of all tested compounds against C. albicans was 25 μg/ml.

Conclusion: N-Phenethyl-N'-{4-[(2E)-3-phenylprop-2-enoyl]phenyl}urea may be a new candidate to be developed as an anticancer compound.

Keywords: Urea, phenylurenyl chalcone, kinase inhibitors, anticancer, antimicrobial, cytotoxicity.

Graphical Abstract

[1]
Risk factors for cancer. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk.
[2]
Cooper, G. Basic facts about cancer.Elements of Human Cancer; , 1992, 1, pp. 4-7.
[3]
Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem., 2017, 25(20), 5754-5763.
[http://dx.doi.org/10.1016/j.bmc.2017.09.003] [PMID: 28927801]
[4]
Yaish, P.; Gazit, A.; Gilon, C.; Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science, 1988, 242(4880), 933-935.
[http://dx.doi.org/10.1126/science.3263702] [PMID: 3263702]
[5]
Yang, E.B.; Guo, Y.J.; Zhang, K.; Chen, Y.Z.; Mack, P. Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives. Biochim. Biophys. Acta, 2001, 1550(2), 144-152.
[http://dx.doi.org/10.1016/S0167-4838(01)00276-X] [PMID: 11755203]
[6]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[7]
Fabbro, D.; Parkinson, D.; Matter, A. Protein tyrosine kinase inhibitors: new treatment modalities? Curr. Opin. Pharmacol., 2002, 2(4), 374-381.
[http://dx.doi.org/10.1016/S1471-4892(02)00179-0] [PMID: 12127869]
[8]
Imatinib. Available from: https://en.wikipedia.org/wiki/Imatinib.
[9]
Sorafenib. Available from: https://en.wikipedia.org/wiki/Sorafenib.
[10]
Chen, J.N.; Wang, X.F.; Li, T.; Wu, D.W.; Fu, X.B.; Zhang, G.J.; Shen, X.C.; Wang, H.S. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 107, 12-25.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.045] [PMID: 26560049]
[11]
Kurt, K.Z.; Ates, F.B.; Bahat, M.N. N′-diaryl urea derivatives: Molecular docking, molecular properties prediction and anticancer evaluation. J. Mol. Struct., 2019, 1193, 239-246.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.024]
[12]
Gougis, P.; Palmieri, L.J.; Funck-Brentano, C.; Paci, A.; Flippot, R.; Mir, O.; Coriat, R. Major pitfalls of protein kinase inhibitors prescription: A review of their clinical pharmacology for daily use. Crit. Rev. Oncol. Hematol., 2019, 141, 112-124.
[http://dx.doi.org/10.1016/j.critrevonc.2019.06.006] [PMID: 31276964]
[13]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[14]
Bhatti, M.; Ayton, S.; Michail, O.; Gollop, N.D.; Ryding, A.; Rushworth, S.; Bowles, K.; Geisler, T.; Flather, M. Effect of Bruton’s tyrosine kinase inhibitors on platelet aggregation in patients with acute myocardial infarction. Thromb. Res., 2019, 179, 64-68.
[http://dx.doi.org/10.1016/j.thromres.2019.04.024] [PMID: 31082751]
[15]
Rimassa, L.; Danesi, R.; Pressiani, T.; Merle, P. Management of adverse events associated with tyrosine kinase inhibitors: Improving outcomes for patients with hepatocellular carcinoma. Cancer Treat. Rev., 2019, 77, 20-28.
[http://dx.doi.org/10.1016/j.ctrv.2019.05.004] [PMID: 31195212]
[16]
Dai, Y.; Guo, Y.; Frey, R.R.; Ji, Z.; Curtin, M.L.; Ahmed, A.A.; Albert, D.H.; Arnold, L.; Arries, S.S.; Barlozzari, T.; Bauch, J.L.; Bouska, J.J.; Bousquet, P.F.; Cunha, G.A.; Glaser, K.B.; Guo, J.; Li, J.; Marcotte, P.A.; Marsh, K.C.; Moskey, M.D.; Pease, L.J.; Stewart, K.D.; Stoll, V.S.; Tapang, P.; Wishart, N.; Davidsen, S.K.; Michaelides, M.R. Thienopyrimidine ureas as novel and potent multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem., 2005, 48(19), 6066-6083.
[http://dx.doi.org/10.1021/jm050458h] [PMID: 16162008]
[17]
Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem., 2000, 69, 373-398.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.373] [PMID: 10966463]
[18]
Li, H.Q.; Yan, T.; Yang, Y.; Shi, L.; Zhou, C.F.; Zhu, H.L. Synthesis and structure-activity relationships of N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas as antitumor agents. Bioorg. Med. Chem., 2010, 18(1), 305-313.
[http://dx.doi.org/10.1016/j.bmc.2009.10.054] [PMID: 19914837]
[19]
Patrick, G.L. An Introduction to Medicinal Chemistry, 6th ed; , 2017.
[20]
Patil, V.M.; Gupta, S.P.; Masand, N. Quantitative structure-activity relationship studies: Understanding the mechanism of tyrosine kinase inhibition. Curr. Enzym. Inhib., 2017, 13, 139-159.
[http://dx.doi.org/10.2174/1573408013666161115162139]
[21]
Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Iwai, A.; Nakamura, K.; Hasegawa, K.; Kobayashi, Y.; Takahashi, N.; Takahashi, K.; Kato, S.; Izawa, T.; Isoe, T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: Synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'-4-(4-quinolyloxy)phenylureas. J. Med. Chem., 2005, 48(5), 1359-1366.
[http://dx.doi.org/10.1021/jm030427r] [PMID: 15743179]
[22]
Caballero, J.; Fernandez, M.; Saavedra, M.F.D. Gonzalez-Nilo, 2D autocorrelation, CoMFA, and CoMSIA modeling of protein kinases’ inhibition by substituted pyrido[2,3-d]pyrimidine derivatives. Bioorg. Med. Chem., 2008, 16, 810-821.
[http://dx.doi.org/10.1016/j.bmc.2007.10.024] [PMID: 17964795]
[23]
Tintori, C.; Magnani, M.; Schenone, S.; Botta, M. Docking, 3D-QSAR studies and in silico ADME prediction on c-Src tyrosine kinase inhibitors. Eur. J. Med. Chem., 2009, 44(3), 990-1000.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.002] [PMID: 18722033]
[24]
Patil, M.; Poyil, A.N.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Synthesis, molecular docking studies, and antimicrobial evaluation of new structurally diverse ureas. Bioorg. Chem., 2019, 87, 302-311.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.024] [PMID: 30913465]
[25]
Brown, J.R.; North, E.J.; Hurdle, J.G.; Morisseau, C.; Scarborough, J.S.; Sun, D.; Korduláková, J.; Scherman, M.S.; Jones, V.; Grzegorzewicz, A.; Crew, R.M.; Jackson, M.; McNeil, M.R.; Lee, R.E. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem., 2011, 19(18), 5585-5595.
[http://dx.doi.org/10.1016/j.bmc.2011.07.034] [PMID: 21840723]
[26]
Dzimbeg, G.; Zorc, B.; Kralj, M.; Ester, K.; Pavelić, K.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: synthesis, cytostatic and antiviral activity evaluations. Eur. J. Med. Chem., 2008, 43(6), 1180-1187.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.001] [PMID: 17961851]
[27]
Duan, M.; Peckham, J.; Edelstein, M.; Ferris, R.; Kazmierski, W.M.; Spaltenstein, A.; Wheelan, P.; Xiong, Z. Discovery of N-benzyl-N'-(4-pipyridinyl)urea CCR5 antagonists as anti-HIV-1 agents (I): optimization of the amine portion. Bioorg. Med. Chem. Lett., 2010, 20(24), 7397-7400.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.033] [PMID: 21035337]
[28]
Selvakumar, N.; Rajulu, G.G.; Reddy, K.C.S.; Chary, B.C.; Kumar, P.K.; Madhavi, T.; Praveena, K.; Reddy, K.H.; Takhi, M.; Mallick, A.; Amarnath, P.V.S.; Kandepu, S.; Iqbal, J.; Synthesis, S.A.R. Synthesis, SAR, and antibacterial activity of novel oxazolidinone analogues possessing urea functionality. Bioorg. Med. Chem. Lett., 2008, 18(2), 856-860.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.024] [PMID: 18155521]
[29]
Flieger, J.; Czajkowska-Żelazko, A.; Rządkowska, M.; Szacoń, E.; Matosiuk, D. Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives. J. Pharm. Biomed. Anal., 2012, 66, 58-67.
[http://dx.doi.org/10.1016/j.jpba.2012.02.025] [PMID: 22445825]
[30]
Thakur, A.S.; Deshmukh, R.; Jha, A.K.; Kumar, P.S. Molecular docking study and anticonvulsant activity of synthesized 4-((4,6-dimethyl-6H-1, 3-thiazin-2-yl)phenylsulfonyl)urea/thiourea Derivatives. J. King Saud Univ. Sci., 2018, 30, 330-336.
[http://dx.doi.org/10.1016/j.jksus.2016.12.006]
[31]
Ušjak, D.; Ivković, B.; Božić, D.D.; Bošković, L.; Milenković, M. Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb. Pathog., 2019, 131, 186-196.
[http://dx.doi.org/10.1016/j.micpath.2019.04.015] [PMID: 30980878]
[32]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[33]
Balkwill, F.; Mantovani, A. Inflammation and cancer: back to Virchow? Lancet, 2001, 357(9255), 539-545.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[34]
Dranoff, G. Immune recognition and tumor protection. Curr. Opin. Immunol., 2002, 14, 161-164.
[http://dx.doi.org/10.1016/S0952-7915(02)00315-1]
[35]
Pardoll, D.M. Spinning molecular immunology into successful immunotherapy. Nat. Rev. Immunol., 2002, 2(4), 227-238.
[http://dx.doi.org/10.1038/nri774] [PMID: 12001994]
[36]
Domínguez, J.N.; Charris, J.E.; Lobo, G.; Gamboa de Domínguez, N.; Moreno, M.M.; Riggione, F.; Sanchez, E.; Olson, J.; Rosenthal, P.J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur. J. Med. Chem., 2001, 36(6), 555-560.
[http://dx.doi.org/10.1016/S0223-5234(01)01245-4] [PMID: 11525846]
[37]
Liu, M.; Wilairat, P.; Croft, S.L.; Tan, A.L.; Go, M.L.; Goa, M. Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem., 2003, 11(13), 2729-2738.
[http://dx.doi.org/10.1016/S0968-0896(03)00233-5] [PMID: 12788347]
[38]
Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.017] [PMID: 28494257]
[39]
Preti, D.; Romagnoli, R.; Rondanin, R.; Cacciari, B.; Hamel, E.; Balzarini, J.; Liekens, S.; Schols, D.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F. Design, synthesis, in vitro antiproliferative activity and apoptosis-inducing studies of 1-(3′,4′,5′-trimethoxyphenyl)-3-(2′-alkoxycarbonylindolyl)-2-propen-1-one derivatives obtained by a molecular hybridisation approach. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1225-1238.
[http://dx.doi.org/10.1080/14756366.2018.1493473] [PMID: 30141353]
[40]
Romagnoli, R.; Prencipe, F.; Lopez-Cara, L.C.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Estévez-Sarmiento, F.; Quintana, J.; Estévez, F.; Estévez, F. Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 727-742.
[http://dx.doi.org/10.1080/14756366.2018.1450749] [PMID: 29620429]
[41]
Lu, C.F.; Wang, S.H.; Pang, X.J.; Zhu, T.; Li, H.L.; Li, Q.R.; Li, Q.Y.; Gu, Y.F.; Mu, Z.Y.; Jin, M.J.; Li, Y.R.; Hu, Y.Y.; Zhang, Y.B.; Song, J.; Zhang, S.Y. Synthesis and Biological Evaluation of Amino Chalcone Derivatives as Antiproliferative Agents. Molecules, 2020, 25(23), 5530-5545.
[http://dx.doi.org/10.3390/molecules25235530] [PMID: 33255804]
[42]
Gençer, N.; Bilen, Ç.; Demir, D.; Atahan, A.; Ceylan, M.; Küçükislamoğlu, M. In vitro inhibition effect of some chalcones on erythrocyte carbonic anhydrase I and II. Artif. Cells Nanomed. Biotechnol., 2013, 41(6), 384-388.
[http://dx.doi.org/10.3109/21691401.2012.761226] [PMID: 23330659]
[43]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J. Med. Chem., 2005, 48(10), 3654-3658.
[http://dx.doi.org/10.1021/jm058208o] [PMID: 15887974]
[44]
Beekman, A.C.; Barentsen, A.R.; Woerdenbag, H.J.; Van Uden, W.; Pras, N.; Konings, A.W.; el-Feraly, F.S.; Galal, A.M.; Wikström, H.V. Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J. Nat. Prod., 1997, 60(4), 325-330.
[http://dx.doi.org/10.1021/np9605495] [PMID: 9134741]
[45]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[46]
European Committee on Antimicrobial Susceptibility Testing; EUCAST, 2019.
[47]
Emami, S.; Ghafouri, E.; Faramarzi, M.A.; Samadi, N.; Irannejad, H.; Foroumadi, A. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur. J. Med. Chem., 2013, 68, 185-191.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.032] [PMID: 23974018]
[48]
Phosrithong, N.; Ungwitayatorn, J. Molecular docking study on anticancer activity of plant-derived natural products. Med. Chem. Res., 2010, 19(8), 817-835.
[http://dx.doi.org/10.1007/s00044-009-9233-5]
[49]
Structure-based lead optimization with glide and MMGBSA, 2018. Available from: http://www.schrodinger.com/sites/default/files/sblo_glide_mmgbsa_2018-1.pdf
[50]
Shi, X.N.; Li, H.; Yao, H.; Liu, X.; Li, L.; Leung, K.S.; Kung, H.F.; Lu, D.; Wong, M.H.; Lin, M.C. In silico identification and in vitro and in vivo validation of anti-psychotic drug fluspirilene as a potential CDK2 inhibitor and a candidate anti-cancer drug. PLoS One, 2015, 10(7)e0132072
[http://dx.doi.org/10.1371/journal.pone.0132072] [PMID: 26147897]
[51]
Spectral Data Supporting the Findings of the Article. Available from: https://drive.google.com/drive/u/0/folders/15r1pZIqGU7PLM2MtwcneQ3QCrktI8Gol.