Evaluation of Anticancer and Epidermal Growth Factor Receptor Inhibition Activity by Benzochromeno Pyrimidin Derivatives in Three Human Cancer Cell Lines

Page: [710 - 723] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer therapy is one of the most important challenges that human beings are facing. The abnormal activity of epidermal growth factor receptor tyrosine kinase (EGFR1) in tumors has been reported in many studies. Tyrosine kinase inhibitors are now commercially available for the treatment of a variety of cancers. Based on our previous studies, we assumed that a hybrid of aminopyrimidine derivatives as EGFR inhibitors and benzocheromen derivatives as cytotoxic agents can induce apoptosis in EGFR positive cancer cells. In the present study, the cytotoxic effect, ability of EGFR inhibition and apoptosis induction of some synthetic benzochromene pyrimidine derivatives were investigated on MDA-MB231, SKBR3 and PC3 cell lines.

Methods: The EGFR inhibition activity was determined using cell-based EGFR ELISA kit. Cell viability was determined by MTT assay in 2D and 3D cultures. The apoptosis was confirmed through different methods such as fluorescent staining, annexin V– propidium iodide double staining, DNALadder assay, caspase-3 colorimetric assay, and nitric oxide assay.

Results: The results of the MTT assay showed that derivatives with different substituents exhibited differential cytotoxicity in three cancer cell lines, although in MDA-MB231 the cytotoxicity effect of compounds is more obvious than the other cell lines. Production of nitric oxide, caspase-3 activity and DNA-fragmentation was significant in MDA-MB231 and PC3 cells. SKBR3 cells, despite having the lowest apoptosis among these three cell lines, showed a significant EGFR inhibition in the ELISA assay.

Conclusion: In this research, we proved that hybrids of benzochromene and amino pyrimidine could be effective on growth inhibition of cancer cell lines and may be used as a drug candidate for cancer therapy in the future.

Keywords: Breast cancer, prostate cancer, EGFR, tyrosine kinase inhibitors, apoptosis, targeted therapy.

Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xo, J.; Murray, T.; Thun, M. Cancer statistics. CA Cancer J. Clin., 2008, 58, 71-96.
[2]
Visakorpi, T. The molecular genetics of prostate cancer. Urology, 2003, 62(5)(Suppl. 1), 3-10.
[http://dx.doi.org/10.1016/S0090-4295(03)00776-3] [PMID: 14607212]
[3]
Feldman, B.J.; Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer, 2001, 1(1), 34-45.
[http://dx.doi.org/10.1038/35094009] [PMID: 11900250]
[4]
Gan, Y.; Shi, C.; Inge, L.; Hibner, M.; Balducci, J.; Huang, Y. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene, 2010, 29(35), 4947-4958.
[http://dx.doi.org/10.1038/onc.2010.240] [PMID: 20562913]
[5]
Li, Y.W.; Zhu, G.Y.; Shen, X.L.; Chu, J.H.; Yu, Z.L.; Fong, W.F. Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells. Cancer Chemother. Pharmacol., 2011, 68(5), 1315-1323.
[http://dx.doi.org/10.1007/s00280-011-1624-x] [PMID: 21461888]
[6]
Verbeek, B.S.; Adriaansen-Slot, S.S.; Vroom, T.M.; Beckers, T.; Rijksen, G. Overexpression of EGFR and c-ERBB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett., 1998, 425(1), 145-150.
[http://dx.doi.org/10.1016/S0014-5793(98)00224-5] [PMID: 9541025]
[7]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[8]
Arteaga, C. Targeting HER1/EGFR: A molecular approach to cancer therapy. Semin. Oncol., 2003, 30(3)(Suppl. 7), 3-14.
[http://dx.doi.org/10.1016/S0093-7754(03)70010-4] [PMID: 12840796]
[9]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[10]
Raymond, E.; Faivre, S.; Armand, J.P. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 2000, 60(Suppl. 1), 15-23.
[http://dx.doi.org/10.2165/00003495-200060001-00002] [PMID: 11129168]
[11]
Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 2013, 34(34), 8690-8707.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.100] [PMID: 23953842]
[12]
Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin. Cancer Res., 2001, 7(10), 2958-2970.
[PMID: 11595683]
[13]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[14]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[15]
Ghafoor, Q.; Baijal, S.; Taniere, P.; O’Sullivan, B.; Evans, M.; Middleton, G. Epidermal Growth Factor Receptor (EGFR) kinase inhibitors and Non-Small Cell Lung Cancer (NSCLC) - advances in molecular diagnostic techniques to facilitate targeted therapy. Pathol. Oncol. Res., 2018, 24(4), 723-731.
[http://dx.doi.org/10.1007/s12253-017-0377-1] [PMID: 29270776]
[16]
Engel, J.; Richters, A.; Getlik, M.; Tomassi, S.; Keul, M.; Termathe, M.; Lategahn, J.; Becker, C.; Mayer-Wrangowski, S.; Grütter, C.; Uhlenbrock, N.; Krüll, J.; Schaumann, N.; Eppmann, S.; Kibies, P.; Hoffgaard, F.; Heil, J.; Menninger, S.; Ortiz-Cuaran, S.; Heuckmann, J.M.; Tinnefeld, V.; Zahedi, R.P.; Sos, M.L.; Schultz-Fademrecht, C.; Thomas, R.K.; Kast, S.M.; Rauh, D. Targeting drug resistance in EGFR with covalent inhibitors: A structure-based design approach. J. Med. Chem., 2015, 58(17), 6844-6863.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01082] [PMID: 26275028]
[17]
Tan, C.S.; Kumarakulasinghe, N.B.; Huang, Y.Q.; Ang, Y.L.E.; Choo, J.R.; Goh, B.C.; Soo, R.A. Third generation EGFR TKIs: Current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[18]
Pordeli, M.; Nakhjiri, M.; Safavi, M.; Ardestani, S.K.; Foroumadi, A. Anticancer effects of synthetic hexahydrobenzo [g]chromen-4-one derivatives on human breast cancer cell lines. Breast Cancer, 2017, 24(2), 299-311.
[http://dx.doi.org/10.1007/s12282-016-0704-5] [PMID: 27250840]
[19]
Rahmani-Nezhad, S.; Safavi, M.; Pordeli, M.; Ardestani, S.K.; Khosravani, L.; Pourshojaei, Y.; Mahdavi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis, in vitro cytotoxicity and apoptosis inducing study of 2-aryl-3-nitro-2H-chromene derivatives as potent anti-breast cancer agents. Eur. J. Med. Chem., 2014, 86, 562-569.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.017] [PMID: 25216378]
[20]
Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; Herich, J.; Lamothe, S.; Cai, S.X.; Tseng, B. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther., 2004, 3(11), 1365-1374.
[PMID: 15542775]
[21]
Saxena, R.; Chandra, V.; Manohar, M.; Hajela, K.; Debnath, U.; Prabhakar, Y.S.; Saini, K.S.; Konwar, R.; Kumar, S.; Megu, K.; Roy, B.G.; Dwivedi, A. Chemotherapeutic potential of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo (b) pyran in estrogen receptor-negative breast cancer cells: Action via prevention of EGFR activation and combined inhibition of PI-3-K/Akt/FOXO and MEK/Erk/AP-1 pathways. PLoS One, 2013, 8(6)e66246
[http://dx.doi.org/10.1371/journal.pone.0066246] [PMID: 23840429]
[22]
Akrami, H.; Safavi, M.; Mirjalili, B.F.D.; Dehghani Ashkezari, M.; Dadfar, F.; Mohaghegh, N.; Emami, S.; Salehi, F.; Nadri, H.; Ardestani, S.K.; Firoozpour, L.; Khoobi, M.; Foroumadi, A. Facile synthesis and antiproliferative activity of 7H-benzo[7,8] chromeno[2,3-d]pyrimidin-8-amines. Eur. J. Med. Chem., 2017, 127, 128-136.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.037] [PMID: 28039771]
[23]
Mohammdi-KhanaposhtaniM. SafaviM. SabourianR. MahdaviM. PordeliM. SaeediM. ArdestaniS.K. ForoumadiA. ShafieeA. AkbarzadehT. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9 (10H)-acridinone-1, 2, 3-triazoles. Mol. Divers., 2015, 19, 787-795.
[http://dx.doi.org/10.1007/s11030-015-9616-0]
[24]
Baldwin, E.L.; Osheroff, N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 363-372.
[http://dx.doi.org/10.2174/1568011054222364] [PMID: 16101488]
[25]
Wang, D.D.; Ma, L.; Wong, M.P.; Lee, V.H.; Yan, H. Contribution of EGFR and ErbB-3 heterodimerization to the EGFR mutation-induced gefitinib-and erlotinib-resistance in non-small-cell lung carcinoma treatments. PLoS One, 2015, 10(5)e0128360
[http://dx.doi.org/10.1371/journal.pone.0128360] [PMID: 25993617]
[26]
Kelm, J.M.; Timmins, N.E.; Brown, C.J.; Fussenegger, M.; Nielsen, L.K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 2003, 83(2), 173-180.
[http://dx.doi.org/10.1002/bit.10655] [PMID: 12768623]
[27]
Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp., 2011, 2011(51), 2720.
[http://dx.doi.org/10.3791/2720] [PMID: 21587162]
[28]
Ivascu, A.; Kubbies, M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen., 2006, 11(8), 922-932.
[http://dx.doi.org/10.1177/1087057106292763] [PMID: 16973921]
[29]
Abolhasani, M.H.; Safavi, M.; Goodarzi, M.T.; Kassaee, S.M.; Azin, M. Identification and anti-cancer activity in 2D and 3D cell culture evaluation of an Iranian isolated marine microalgae Picochlorum sp. RCC486. Daru, 2018, 26(2), 105-116.
[http://dx.doi.org/10.1007/s40199-018-0213-5] [PMID: 30242672]
[30]
Ho, W.Y.; Yeap, S.K.; Ho, C.L.; Rahim, R.A.; Alitheen, N.B. Development of Multicellular Tumor Spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One, 2012, 7(9)e44640
[http://dx.doi.org/10.1371/journal.pone.0044640] [PMID: 22970274]
[31]
Ioannou, Y.A.; Chen, F.W. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res., 1996, 24(5), 992-993.
[http://dx.doi.org/10.1093/nar/24.5.992] [PMID: 8600475]
[32]
Matassov, D.; Kagan, T.; Leblanc, J.; Sikorska, M.; Zakeri, Z. Measurement of Apoptosis by DNA Fragmentation.Apoptosis Methods and Protocols. Methods in Molecular Biology; Brady, H.J.M., Ed.; Humana Press: Totowa, NJ, 2004, pp. 1-17.
[http://dx.doi.org/10.1385/1-59259-812-9:001]
[33]
Brüne, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ., 2003, 10(8), 864-869.
[http://dx.doi.org/10.1038/sj.cdd.4401261] [PMID: 12867993]
[34]
Sawyers, C. Targeted cancer therapy. Nature, 2004, 432(7015), 294-297.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[35]
Yamasaki, F.; Zhang, D.; Bartholomeusz, C.; Sudo, T.; Hortobagyi, G.N.; Kurisu, K.; Ueno, N.T. Sensitivity of breast cancer cells to erlotinib depends on cyclin-dependent kinase 2 activity. Mol. Cancer Ther., 2007, 6(8), 2168-2177.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0514] [PMID: 17671085]
[36]
Giannopoulou, E.; Antonacopoulou, A.; Floratou, K.; Papavassiliou, A.G.; Kalofonos, H.P. Dual targeting of EGFR and HER-2 in colon cancer cell lines. Cancer Chemother. Pharmacol., 2009, 63(6), 973-981.
[http://dx.doi.org/10.1007/s00280-008-0820-9] [PMID: 18751705]
[37]
Carrión-Salip, D.; Panosa, C.; Menendez, J.A.; Puig, T.; Oliveras, G.; Pandiella, A.; De Llorens, R.; Massaguer, A. Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands. Int. J. Oncol., 2012, 41(3), 1128-1138.
[http://dx.doi.org/10.3892/ijo.2012.1509] [PMID: 22684500]
[38]
Brüne, B.; von Knethen, A.; Sandau, K.B. Nitric Oxide (NO): An effector of apoptosis. Cell Death Differ., 1999, 6(10), 969-975.
[http://dx.doi.org/10.1038/sj.cdd.4400582] [PMID: 10556974]
[39]
Napoli, C.; Paolisso, G.; Casamassimi, A.; Al-Omran, M.; Barbieri, M.; Sommese, L.; Infante, T.; Ignarro, L.J. Effects of nitric oxide on cell proliferation: Novel insights. J. Am. Coll. Cardiol., 2013, 62(2), 89-95.
[http://dx.doi.org/10.1016/j.jacc.2013.03.070] [PMID: 23665095]
[40]
Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol., 2013, 11, 118.
[http://dx.doi.org/10.1186/1477-7819-11-118] [PMID: 23718886]
[41]
Xie, K.; Huang, S. Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic. Biol. Med., 2003, 34(8), 969-986.
[http://dx.doi.org/10.1016/S0891-5849(02)01364-3] [PMID: 12684082]
[42]
Cui, J.; Hu, Y.F.; Feng, X.M.; Tian, T.; Guo, Y.H.; Ma, J.W.; Nan, K.J.; Zhang, H.Y. EGFR inhibitors and autophagy in cancer treatment. Tumour Biol., 2014, 35(12), 11701-11709.
[http://dx.doi.org/10.1007/s13277-014-2660-z] [PMID: 25293518]
[43]
Ono, N.; Yamazaki, T.; Tsukaguchi, T.; Fujii, T.; Sakata, K.; Suda, A.; Tsukuda, T.; Mio, T.; Ishii, N.; Kondoh, O.; Aoki, Y. Enhanced antitumor activity of erlotinib in combination with the Hsp90 inhibitor CH5164840 against non-small-cell lung cancer. Cancer Sci., 2013, 104(10), 1346-1352.
[http://dx.doi.org/10.1111/cas.12237] [PMID: 23863134]