Novel 2-Nitroimidazole and Imidazooxazole Derivatives and their Activity against Trypanosoma cruzi and Mycobacterium tuberculosis

Page: [701 - 709] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Tuberculosis (TB) is one of the top ten causes of death worldwide, while Chagas disease (CD) is the parasitic disease that kills the largest number of people in the Americas. TB is the leading cause of death for patients with AIDS; it kills 1.5 million people and causes 10 million new cases every year. The lack of newly developed chemotherapeutic agents and insufficient access to health care services for a diagnosis increase the incidence of multidrug-resistant TB (MDRTB) cases. Although CD was identified in 1909, the chronic stages of the disease still lack adequate treatment.

Objective: The purpose of this work was to design and synthesize two new series of 2-nitroimidazole 5a-e and imidazooxazoles 6a-e with 1H-1,2,3-triazolil nucleus and evaluate their activities against Tc and Mycobacterium tuberculosis (Mtb).

Methods: Two series of five compounds were synthesized in a 3 or 4-step route in moderated yields, and their structures were confirmed by NMR spectral data analyses. The in vitro antitrypanosomal evaluation of products was carried out in an intracellular model using L929 cell line infected with trypomastigotes and amastigote forms of Tc of β-galactosidase-transfected Tulahuen strain. Their antimycobacterial activity was evaluated against Mtb strain H37Rv.

Results: In general, 2-nitroimidazolic derivatives proved to be more potent in regard to antitrypanocidal and antimycobacterial activity. The non-cytotoxic 2-nitroimidazole derivative 5b was the most promising with a half maximum inhibitory concentration of 3.2 μM against Tc and a minimum inhibitory concentration of 65.3 μM against Mtb.

Conclusion: Our study reinforced the importance of 2-nitroimidazole and 1H-1,2,3-triazole nuclei in antimicrobial activity. In addition, derivative 5b proved to be the most promising, presenting important activity against Tc and Mtb and could be used as a starting point for the development of new agents against these diseases.

Keywords: Chagas disease, tuberculosis, nitroimidazole, 1H-1, 2, 3-triazole, imidazooxazole, Trypanosoma cruzi, Mycobacterium tuberculosis.

Graphical Abstract

[1]
World Health Organization. HIV-associated tuberculosis., 2018. Available from: http://www.who.int/mediacentre/factsheets/fs340/en/ (Accessed Aug 28, 2020).
[2]
Norman, F.F.; López-Vélez, R. Chagas disease: comments on the 2018 PAHO Guidelines for diagnosis and management. J. Travel Med., 2019, 26(7), 1-28.
[http://dx.doi.org/10.1093/jtm/taz060] [PMID: 31407784]
[3]
World Health Organization. Global tuberculosis report 2019, 2019 Availableform: http://www.who.int/tb/publications/global_report/en/
[4]
Branco, F.S.C.; Pinto, A.C.; Boechat, N. An update on the chemistry and medicinal chemistry of novel antimycobacterial compounds. Curr. Top. Med. Chem., 2013, 13(22), 2808-2849.
[http://dx.doi.org/10.2174/15680266113136660201] [PMID: 24111907]
[5]
TB ALLIANCE. 2020. Available from: https://www.tballiance.org/access/pretomanid-and-bpal-regimen (Accessed Aug 28, 2020).
[6]
Cox, V.; Brigden, G.; Crespo, R.H.; Lessem, E.; Lynch, S.; Rich, M.L.; Waning, B.; Furin, J. Global programmatic use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2018, 22(4), 407-412.
[http://dx.doi.org/10.5588/ijtld.17.0706] [PMID: 29562988]
[7]
Fujiwara, M.; Kawasaki, M.; Hariguchi, N.; Liu, Y.; Matsumoto, M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 186-194.
[http://dx.doi.org/10.1016/j.tube.2017.12.006] [PMID: 29523322]
[8]
Thompson, A.M.; O’Connor, P.D.; Blaser, A.; Yardley, V.; Maes, L.; Gupta, S.; Launay, D.; Martin, D.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W.A. Repositioning antitubercular 6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for neglected tropical diseases: structure-activity studies on a preclinical candidate for visceral leishmaniasis. J. Med. Chem., 2016, 59(6), 2530-2550.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01699] [PMID: 26901446]
[9]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Kaiser, M. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines. Eur. J. Med. Chem., 2017, 138, 1106-1113.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.060] [PMID: 28763645]
[10]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; de Lourdes, G. Ferreira, M.; de C da Silva, F.; Bastos, M.M.; Dos S Costa, M.; Lourenço, M.C.S.L.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[11]
do Vale Chaves, E. Mello, F.; Castro Salomão Quaresma, B.M.; Resende Pitombeira, M.C.; Araújo de Brito, M.; Farias, P.P.; Lisboa de Castro, S.; Salomão, K.; Silva de Carvalho, A.; Oliveira de Paula, J.I.; de Brito Nascimento, S.; Peixoto Cupello, M.; Paes, M.C.; Boechat, N.; Felzenszwalb, I. Novel nitroimidazole derivatives evaluated for their trypanocidal, cytotoxic, and genotoxic activities. Eur. J. Med. Chem., 2020, 186111887
[http://dx.doi.org/10.1016/j.ejmech.2019.111887] [PMID: 31787363]
[12]
Poce, G.; Cocozza, M.; Consalvi, S.; Biava, M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.066] [PMID: 25173852]
[13]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; Dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
[14]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[15]
Lee, D.Y.W.; Ji, X.S.; Raleigh, J.A. Hypoxia-selective, weakly basic 2-nitroimidazole delivery agents and methods of use thereof. U.S. Patent 7,842,278 2010.
[16]
Borzecka, W.; Lavandera, I.; Gotor, V. Biocatalyzed synthesis of both enantiopure fluoromisonidazole antipodes. Tetrahedron Lett., 2013, 54, 5022-5025.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.013]
[17]
Romanha, A.J.; Castro, S.L. Soeiro, Mde.N.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; Spadafora, C.; Chiari, E.; Chatelain, E.; Chaves, G.; Calzada, J.E.; Bustamante, J.M.; Freitas-Junior, L.H.; Romero, L.I.; Bahia, M.T.; Lotrowska, M.; Soares, M.; Andrade, S.G.; Armstrong, T.; Degrave, W.; Andrade, Zde.A.; Andrade, Z.A. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2010, 105(2), 233-238.
[http://dx.doi.org/10.1590/S0074-02762010000200022] [PMID: 20428688]
[18]
Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop., 1993, 55(4), 257-261.
[http://dx.doi.org/10.1016/0001-706X(93)90083-N] [PMID: 8147282]
[19]
Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; Gilman, R.H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol., 1998, 36(2), 362-366.
[http://dx.doi.org/10.1128/JCM.36.2.362-366.1998] [PMID: 9466742]
[20]
Castelo-Branco, F.S.; de Lima, E.C.; Domingos, J.L.O.; Pinto, A.C.; Lourenço, M.C.S.; Gomes, K.M.; Costa-Lima, M.M.; Araujo-Lima, C.F.; Aiub, C.A.F.; Felzenszwalb, I.; Costa, T.E.M.M.; Penido, C.; Henriques, M.G.; Boechat, N. New hydrazides derivatives of isoniazid against Mycobacterium tuberculosis: higher potency and lower hepatocytotoxicity. Eur. J. Med. Chem., 2018, 146, 529-540.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.071] [PMID: 29407978]
[21]
Gonçalves, R.S.B.; Kaiser, C.R.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.S.V.; Henriques, Md.; Costa, T. Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: in vitro activity including against the multidrug-resistant tuberculosis strain T113. Bioorg. Med. Chem., 2012, 20(1), 243-248.
[http://dx.doi.org/10.1016/j.bmc.2011.11.006] [PMID: 22142615]
[22]
Tetko, I.V.; Tanchuk, V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1136-1145.
[http://dx.doi.org/10.1021/ci025515j] [PMID: 12377001]