Bone Marrow Mesenchymal Stem Cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing Extracellular Matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the Intervertebral Disc Degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they are secreted and can inhibit Nucleus Pulposus Cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Keywords: Bone marrow mesenchymal stem cells (BMSCs), exosome, intervertebral disc degeneration (IDD), transplantation, therapy, low back pain (LBP).