Inhibition of iNOS by Benzimidazole Derivatives: Synthesis, Docking, and Biological Evaluations

Page: [602 - 615] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Inducible nitric Oxide Synthase (iNOS) plays a key role in the progression of inflammatory diseases by accelerating the production of NO, which makes it an intriguing target to treat inflammation in complex diseases. Therefore, the search is on to develop molecules as selective iNOS inhibitors.

Objective: The present work was aimed to design, synthesize and evaluate benzimidazole-coumarin coupled molecules as anti-iNOS agents through in silico and pharmacological studies.

Methods: A critical study of literature reports on iNOS inhibitors led to the selection of a (un)substituted coumarin nucleus, 2-aminobenzimidazole, and a 4-atom linker as important structural components for iNOS inhibition. Two series of compounds (7-16 and 17-26) were designed and synthesized by coupling these components. The compounds were subjected to docking using iNOS (1QW4) and nNOS (1QW6) as targets. All compounds were evaluated for NO and iNOS inhibitory activities in vitro. The selected compound was finally evaluated for anti-inflammatory activity in vivo using the carrageenan-induced rat paw edema model.

Results: All compounds showed moderate to good inhibition of NO and iNOS in vitro. Compound 12 was the most potent inhibitor of NO and iNOS. Hence, it was evaluated in vivo for toxicity and anti-inflammatory activity. It was found to be safe in acute toxicity studies, and effective in reducing the rat paw edema significantly. Its anti-inflammatory behaviour was similar to that of aminoguanidine, which is a selective iNOS inhibitor.

Conclusion: The newly synthesized benzimidazole-coumarin hybrids may serve as potential leads for the development of novel anti-iNOS agents.

Keywords: Benzimidazole, coumarin, iNOS, docking, anti-inflammatory, carrageenan.

Graphical Abstract

[1]
Ma, L.; Pei, H.; Lei, L.; He, L.; Chen, J.; Liang, X.; Peng, A.; Ye, H.; Xiang, M.; Chen, L. Structural exploration, synthesis and pharmaco-logical evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives as iNOS inhibitors against inflammatory diseases. Eur. J. Med. Chem., 2015, 92, 178-190.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.036] [PMID: 25555141]
[2]
Kahlenberg, J.M.; Fox, D.A. Advances in the medical treatment of rheumatoid arthritis. Hand Clin., 2011, 27(1), 11-20.
[http://dx.doi.org/10.1016/j.hcl.2010.09.002] [PMID: 21176795]
[3]
Handa, R.; Rao, U.R.K.; Lewis, J.F.; Rambhad, G.; Shiff, S.; Ghia, C.J. Literature review of rheumatoid arthritis in India. Int. J. Rheum. Dis., 2016, 19(5), 440-451.
[http://dx.doi.org/10.1111/1756-185X.12621] [PMID: 26171649]
[4]
Upadhyay, K.; Bavishi, A.; Thakrar, S.; Radadiya, A.; Vala, H.; Parekh, S.; Bhavsar, D.; Savant, M.; Parmar, M.; Adlakha, P.; Shah, A. Synthesis and biological evaluation of 4-styrylcoumarin derivatives as inhibitors of TNF-α and IL-6 with anti-tubercular activity. Bioorg. Med. Chem. Lett., 2011, 21(8), 2547-2549.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.016] [PMID: 21396814]
[5]
Salvemini, D.; Wang, Z.Q.; Wyatt, P.S.; Bourdon, D.M.; Marino, M.H.; Manning, P.T.; Currie, M.G. Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol., 1996, 118(4), 829-838.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15475.x] [PMID: 8799551]
[6]
Popp, R.; Fleming, I.; Busse, R. Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: A mod-ulator of arterial compliance. Circ. Res., 1998, 82(6), 696-703.
[http://dx.doi.org/10.1161/01.RES.82.6.696] [PMID: 9546378]
[7]
Ignarro, L.J.; Cirino, G.; Casini, A.; Napoli, C. Nitric oxide as a signaling molecule in the vascular system: An overview. J. Cardiovasc. Pharmacol., 1999, 34(6), 879-886.
[http://dx.doi.org/10.1097/00005344-199912000-00016] [PMID: 10598133]
[8]
Tripathi, P.; Tripathi, P.; Kashyap, L.; Singh, V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol., 2007, 51(3), 443-452.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00329.x] [PMID: 17903207]
[9]
Yoshida, Y.; Tanaka, T. Interleukin 6 and rheumatoid arthritis. BioMed Res. Int., 2014, 2014, 698313.
[http://dx.doi.org/10.1155/2014/698313] [PMID: 24524085]
[10]
Maccallini, C.; Montagnani, M.; Paciotti, R.; Ammazzalorso, A.; De Filippis, B.; Di Matteo, M.; Di Silvestre, S.; Fantacuzzi, M.; Giam-pietro, L.; Potenza, M.A.; Re, N.; Pandolfi, A.; Amoroso, R. Selective acetamidine-based nitric oxide synthase inhibitors: Synthesis, dock-ing, and biological studies. ACS Med. Chem. Lett., 2015, 6(6), 635-640.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00149] [PMID: 26101565]
[11]
Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev., 2020, 40(1), 158-189.
[http://dx.doi.org/10.1002/med.21599] [PMID: 31192483]
[12]
Minhas, R.; Bansal, Y.; Bansal, G. Inducible nitric oxide synthase inhibitors: A comprehensive update. Med. Res. Rev., 2020, 40(3), 823-855.
[http://dx.doi.org/10.1002/med.21636] [PMID: 31502681]
[13]
Carrión, M.D.; López Cara, L.C.; Camacho, M.E.; Tapias, V.; Escames, G.; Acuña-Castroviejo, D.; Espinosa, A.; Gallo, M.A.; Entrena, A. Pyrazoles and pyrazolines as neural and inducible nitric oxide synthase (nNOS and iNOS) potential inhibitors (III). Eur. J. Med. Chem., 2008, 43(11), 2579-2591.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.014] [PMID: 18325637]
[14]
Lee, Y.; Martasek, P.; Roman, L.J.; Masters, B.S.S.; Silverman, R.B. Imidazole-containing amino acids as selective inhibitors of nitric oxide synthases. Bioorg. Med. Chem., 1999, 7(9), 1941-1951.
[http://dx.doi.org/10.1016/S0968-0896(99)00117-0] [PMID: 10530943]
[15]
Payne, J.E.; Bonnefous, C.; Symons, K.T.; Nguyen, P.M.; Sablad, M.; Rozenkrants, N.; Zhang, Y.; Wang, L.; Yazdani, N.; Shiau, A.K.; Noble, S.A.; Rix, P.; Rao, T.S.; Hassig, C.A.; Smith, N.D. Discovery of dual inducible/neuronal nitric oxide synthase (iNOS/nNOS) inhibi-tor development candidate 4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one (KD7332) part 2: Identification of a novel, potent, and selective series of benzimidazole-quinolinone iNOS/nNOS dimerization inhibitors that are orally ac-tive in pain models. J. Med. Chem., 2010, 53(21), 7739-7755.
[http://dx.doi.org/10.1021/jm100828n] [PMID: 20931971]
[16]
Kostova, I. Synthetic and natural coumarins as antioxidants. Mini Rev. Med. Chem., 2006, 6(4), 365-374.
[http://dx.doi.org/10.2174/138955706776361457] [PMID: 16613573]
[17]
Minhas, R.; Bansal, G.; Bansal, Y. Novel coupled molecules from active structural motifs of synthetic and natural origin as immunosup-pressants. Med. Chem., 2020, 16(4), 544-554.
[http://dx.doi.org/10.2174/1573406415666190409111459] [PMID: 30963980]
[18]
Bansal, Y.; Silakari, O. 2-Aminobenzimidazole conjugates of NSAIDS: Novel compounds with immunomodulatory, anti-inflammatory and antioxidant actions. Med. Chem. Res., 2015, 24(3), 1170-1179.
[http://dx.doi.org/10.1007/s00044-014-1198-3]
[19]
Mishra, T.; Bhatia, A. Augmentation of expression of immunocytes’ functions by seed extract of Ziziphus mauritiana (Lamk.). J. Ethnopharmacol., 2010, 127(2), 341-345.
[http://dx.doi.org/10.1016/j.jep.2009.10.033] [PMID: 19887103]
[20]
OECD Test Guideline 425.. Guidelines for testing of chemicals. Guidelines 425, acute oral toxicity—up-and-down procedure. 2001. Available from: www.oecd.org (Accessed May 12, 2021).
[21]
Stuehr, D.J.; Haque, M.M. Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br. J. Pharmacol., 2019, 176(2), 177-188.
[http://dx.doi.org/10.1111/bph.14533] [PMID: 30402946]