A Molecular Link Between Diabetes and Breast Cancer: Therapeutic Potential of Repurposing Incretin-based Therapies for Breast Cancer

Page: [829 - 848] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.

Keywords: Diabetes, breast cancer, liraglutide, exendin-4, sitagliptin, DPP-IV.

Graphical Abstract

[1]
Collins, K.K. The diabetes-cancer link. Diabetes Spectr., 2014, 27(4), 276-280.
[http://dx.doi.org/10.2337/diaspect.27.4.276] [PMID: 25647050]
[2]
Ferroni, P.; Riondino, S.; Buonomo, O.; Palmirotta, R.; Guadagni, F.; Roselli, M. Type 2 diabetes and breast cancer: the interplay between impaired glucose metabolism and oxidant stress. Oxid. Med. Cell. Longev., 2015, 2015, 183928.
[http://dx.doi.org/10.1155/2015/183928] [PMID: 26171112]
[3]
Samuel, S.M.; Varghese, E.; Varghese, S.; Büsselberg, D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat. Rev., 2018, 70, 98-111.
[http://dx.doi.org/10.1016/j.ctrv.2018.08.004] [PMID: 30130687]
[4]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[5]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[6]
Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X. E LP, Borresen-Dale AL, Brown PO and Botstein D. Molecular portraits of human breast tumors. Nature, 2000, 406, 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[7]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[8]
Sorlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[9]
Abd El-Rehim, D.M.; Pinder, S.E.; Paish, C.E.; Bell, J.; Blamey, R.W.; Robertson, J.F.; Nicholson, R.I.; Ellis, I.O. Expression of luminal and basal cytokeratins in human breast carcinoma. J. Pathol., 2004, 203(2), 661-671.
[http://dx.doi.org/10.1002/path.1559] [PMID: 15141381]
[10]
Brenton, J.D.; Carey, L.A.; Ahmed, A.A.; Caldas, C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol., 2005, 23(29), 7350-7360.
[http://dx.doi.org/10.1200/JCO.2005.03.3845] [PMID: 16145060]
[11]
Miller, K.D.; Burstein, H.J.; Elias, A.D.; Rugo, H.S.; Cobleigh, M.A.; Pegram, M.D.; Eisenberg, P.D.; Collier, M.; Adams, B.J.; Baum, C.M. Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastaticbreast cancer (MBC). J. Clin. Oncol., 2005, 23, 563-563.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.563]
[12]
Abbas, S.; Linseisen, J.; Slanger, T.; Kropp, S.; Mutschelknauss, E.J.; Flesch-Janys, D.; Chang-Claude, J. Serum 25-hydroxyvitamin D and risk of post-menopausal breast cancer- results of a large case-control study. Carcinogenesis, 2008, 29(1), 93-99.
[http://dx.doi.org/10.1093/carcin/bgm240] [PMID: 17974532]
[13]
Morikawa, A.; Henry, N.L. Palbociclib for the treatment of estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin. Cancer Res., 2015, 21(16), 3591-3596.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0390] [PMID: 26100274]
[14]
Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; Deming, S.L.; Geradts, J.; Cheang, M.C.; Nielsen, T.O.; Moorman, P.G.; Earp, H.S.; Millikan, R.C. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 2006, 295(21), 2492-2502.
[http://dx.doi.org/10.1001/jama.295.21.2492] [PMID: 16757721]
[15]
Rouzier, R.; Perou, C.M.; Symmans, W.F.; Ibrahim, N.; Cristofanilli, M.; Anderson, K.; Hess, K.R.; Stec, J.; Ayers, M.; Wagner, P.; Morandi, P.; Fan, C.; Rabiul, I.; Ross, J.S.; Hortobagyi, G.N.; Pusztai, L. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res., 2005, 11(16), 5678-5685.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2421] [PMID: 16115903]
[16]
Nagata, Y.; Lan, K.H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; Hortobagyi, G.N.; Hung, M.C.; Yu, D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 2004, 6(2), 117-127.
[http://dx.doi.org/10.1016/j.ccr.2004.06.022] [PMID: 15324695]
[17]
Tripathy, D.; Hassan, S.; Verma, S.; Gurnani, P.; Nandi, A.; Rosenblatt, K. Phenotypic and proteomic alterations of acquired trastuzumab resistance. J. Clin. Oncol., 2005, 23, 3121-3121.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.3121]
[18]
Cancello, G.; Montagna, E.; D’Agostino, D.; Giuliano, M.; Giordano, A.; Di Lorenzo, G.; Plaitano, M.; De Placido, S.; De Laurentiis, M. Continuing trastuzumab beyond disease progression: outcomes analysis in patients with metastatic breast cancer. Breast Cancer Res., 2008, 10(4), R60.
[http://dx.doi.org/10.1186/bcr2119] [PMID: 18631394]
[19]
Sotiriou, C.; Neo, S.Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10393-10398.
[http://dx.doi.org/10.1073/pnas.1732912100] [PMID: 12917485]
[20]
O’Brien, K.M.; Cole, S.R.; Tse, C.K.; Perou, C.M.; Carey, L.A.; Foulkes, W.D.; Dressler, L.G.; Geradts, J.; Millikan, R.C. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin. Cancer Res., 2010, 16(24), 6100-6110.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1533] [PMID: 21169259]
[21]
Fan, C.; Oh, D.S.; Wessels, L.; Weigelt, B.; Nuyten, D.S.; Nobel, A.B.; van’t Veer, L.J.; Perou, C.M. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med., 2006, 355(6), 560-569.
[http://dx.doi.org/10.1056/NEJMoa052933] [PMID: 16899776]
[22]
Swenson, R.R.; Rizzo, C.J.; Brown, L.K.; Payne, N.; DiClemente, R.J.; Salazar, L.F.; Vanable, P.A.; Carey, M.P.; Valois, R.F.; Romer, D.; Hennessy, M. Prevalence and correlates of HIV testing among sexually active African American adolescents in 4 US cities. Sex. Transm. Dis., 2009, 36(9), 584-591.
[http://dx.doi.org/10.1097/OLQ.0b013e3181b4704c] [PMID: 19661840]
[23]
Ho-Yen, C.; Bowen, R.L.; Jones, J. Characterization of basal-like breast cancer: an update. Diagn. Histopathol., 2012, 18, 104-111.
[http://dx.doi.org/10.1016/j.mpdhp.2011.12.002]
[24]
Jääskeläinen, A.; Roininen, N.; Karihtala, P.; Jukkola, A. High parity predicts poor outcomes in patients with luminal b-like (HER2 negative) early breast cancer: a prospective finnish single-center study. Front. Oncol., 2020, 10, 1470.
[http://dx.doi.org/10.3389/fonc.2020.01470] [PMID: 32923400]
[25]
Rakha, E.A.; Putti, T.C.; Abd El-Rehim, D.M.; Paish, C.; Green, A.R.; Powe, D.G.; Lee, A.H.; Robertson, J.F.; Ellis, I.O. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J. Pathol., 2006, 208(4), 495-506.
[http://dx.doi.org/10.1002/path.1916] [PMID: 16429394]
[26]
Jääskeläinen, A.; Soini, Y.; Jukkola-Vuorinen, A.; Auvinen, P.; Haapasaari, K.M.; Karihtala, P. High-level cytoplasmic claudin 3 expression is an independent predictor of poor survival in triple-negative breast cancer. BMC Cancer, 2018, 18(1), 223.
[http://dx.doi.org/10.1186/s12885-018-4141-z] [PMID: 29482498]
[27]
Rouzier, R.; Anderson, K.; Hess, K.R. Basal and luminal types of breast cancer defined by gene expression patterns respond differently to neoadjuvant chemotherapy. San Antonio Breast Cancer Symposium, San Antonio, TX2004.
[28]
Chang, H.Y.; Nuyten, D.S.; Sneddon, J.B.; Hastie, T.; Tibshirani, R.; Sørlie, T.; Dai, H.; He, Y.D.; van’t Veer, L.J.; Bartelink, H.; van de Rijn, M.; Brown, P.O.; van de Vijver, M.J. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3738-3743.
[http://dx.doi.org/10.1073/pnas.0409462102] [PMID: 15701700]
[29]
Smid, M.; Wang, Y.; Zhang, Y.; Sieuwerts, A.M.; Yu, J.; Klijn, J.G.; Foekens, J.A.; Martens, J.W. Subtypes of breast cancer show preferential site of relapse. Cancer Res., 2008, 68(9), 3108-3114.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5644] [PMID: 18451135]
[30]
Boyle, P.; Boniol, M.; Koechlin, A.; Robertson, C.; Valentini, F.; Coppens, K.; Fairley, L.L.; Boniol, M.; Zheng, T.; Zhang, Y.; Pasterk, M.; Smans, M.; Curado, M.P.; Mullie, P.; Gandini, S.; Bota, M.; Bolli, G.B.; Rosenstock, J.; Autier, P. Diabetes and breast cancer risk: a meta-analysis. Br. J. Cancer, 2012, 107(9), 1608-1617.
[http://dx.doi.org/10.1038/bjc.2012.414] [PMID: 22996614]
[31]
Hardefeldt, P.J.; Edirimanne, S.; Eslick, G.D. Diabetes increases the risk of breast cancer: a meta-analysis. Endocr. Relat. Cancer, 2012, 19(6), 793-803.
[http://dx.doi.org/10.1530/ERC-12-0242] [PMID: 23035011]
[32]
Larsson, S.C.; Mantzoros, C.S.; Wolk, A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int. J. Cancer, 2007, 121(4), 856-862.
[http://dx.doi.org/10.1002/ijc.22717] [PMID: 17397032]
[33]
Carstensen, B.; Jørgensen, M.E.; Friis, S. The epidemiology of diabetes and cancer. Curr. Diab. Rep., 2014, 14(10), 535.
[http://dx.doi.org/10.1007/s11892-014-0535-8] [PMID: 25156543]
[34]
Memon, A.A.; Bennet, L.; Zöller, B.; Wang, X.; Palmer, K.; Sundquist, K.; Sundquist, J. Circulating human epidermal growth factor receptor 2 (HER2) is associated with hyperglycaemia and insulin resistance. J. Diabetes, 2015, 7(3), 369-377.
[http://dx.doi.org/10.1111/1753-0407.12184] [PMID: 24981162]
[35]
Fernández-Real, J.M.; Menendez, J.A.; Frühbeck, G.; Moreno-Navarrete, J.M.; Vazquez-Martín, A.; Ricart, W. Serum HER-2 concentration is associated with insulin resistance and decreases after weight loss. Nutr. Metab. (Lond.), 2010, 7, 14-21.
[http://dx.doi.org/10.1186/1743-7075-7-14] [PMID: 20184722]
[36]
Kang, C.; LeRoith, D.; Gallagher, E.J. Diabetes, obesity, and breast cancer. Endocrinology, 2018, 159(11), 3801-3812.
[http://dx.doi.org/10.1210/en.2018-00574] [PMID: 30215698]
[37]
Ray, A.; Alalem, M.; Ray, B.K. Insulin signaling network in cancer. Indian J. Biochem. Biophys., 2014, 51(6), 493-498.
[PMID: 25823221]
[38]
Luque, R.M.; López-Sánchez, L.M.; Villa-Osaba, A.; Luque, I.M.; Santos-Romero, A.L.; Yubero-Serrano, E.M.; Cara-García, M.; Álvarez-Benito, M.; López-Mirand A, J.; Gahete, M.D.; Castaño, J.P. Breast cancer is associated to impaired glucose/insulin homeostasis in premenopausal obese/overweight patients. Oncotarget, 2017, 8(46), 81462-81474.
[http://dx.doi.org/10.18632/oncotarget.20399] [PMID: 29113405]
[39]
Bronsveld, H.K.; Jensen, V.; Vahl, P.; De Bruin, M.L.; Cornelissen, S.; Sanders, J.; Auvinen, A.; Haukka, J.; Andersen, M.; Vestergaard, P.; Schmidt, M.K. Diabetes and Breast Cancer Subtypes. PLoS One, 2017, 12(1), e0170084.
[http://dx.doi.org/10.1371/journal.pone.0170084] [PMID: 28076434]
[40]
Suba, Z. Interplay between insulin resistance and estrogen deficiency as co- activators in carcinogenesis. Pathol. Oncol. Res., 2012, 18(2), 123-133.
[http://dx.doi.org/10.1007/s12253-011-9466-8] [PMID: 21984197]
[41]
Johnson, J.A.; Gale, E.A. Diabetes, insulin use, and cancer risk: are observational studies part of the solution-or part of the problem? Diabetes, 2010, 59(5), 1129-1131.
[http://dx.doi.org/10.2337/db10-0334] [PMID: 20427699]
[42]
Orgel, E.; Mittelman, S.D. The links between insulin resistance, diabetes, and cancer. Curr. Diab. Rep., 2013, 13(2), 213-222.
[http://dx.doi.org/10.1007/s11892-012-0356-6] [PMID: 23271574]
[43]
Tseng, C.H. Prolonged use of human insulin increases breast cancer risk in Taiwanese women with type 2 diabetes. BMC Cancer, 2015, 15, 846.
[http://dx.doi.org/10.1186/s12885-015-1876-7] [PMID: 26537234]
[44]
Starup-Linde, J.; Karlstad, O.; Eriksen, S.A.; Vestergaard, P.; Bronsveld, H.K.; de Vries, F.; Andersen, M.; Auvinen, A.; Haukka, J.; Hjellvik, V.; Bazelier, M.T.; Boer, Ad.; Furu, K.; De Bruin, M.L. CARING (CAncer Risk and INsulin analoGues): the association of diabetes mellitus and cancer risk with focus on possible determinants - a systematic review and a meta-analysis. Curr. Drug Saf., 2013, 8(5), 296-332.
[http://dx.doi.org/10.2174/15748863113086660071] [PMID: 24215312]
[45]
Liao, S.; Li, J.; Wei, W.; Wang, L.; Zhang, Y.; Li, J.; Wang, C.; Sun, S. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac. J. Cancer Prev., 2011, 12(4), 1061-1065.
[PMID: 21790252]
[46]
Xue, F.; Michels, K.B. Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am. J. Clin. Nutr., 2007, 86(3), s823-s835.
[http://dx.doi.org/10.1093/ajcn/86.3.823S] [PMID: 18265476]
[47]
Peairs, K.S.; Barone, B.B.; Snyder, C.F.; Yeh, H.C.; Stein, K.B.; Derr, R.L.; Brancati, F.L.; Wolff, A.C. Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J. Clin. Oncol., 2011, 29(1), 40-46.
[http://dx.doi.org/10.1200/JCO.2009.27.3011] [PMID: 21115865]
[48]
Hou, G.; Zhang, S.; Zhang, X.; Wang, P.; Hao, X.; Zhang, J. Clinical pathological characteristics and prognostic analysis of 1,013 breast cancer patients with diabetes. Breast Cancer Res. Treat., 2013, 137(3), 807-816.
[http://dx.doi.org/10.1007/s10549-012-2404-y] [PMID: 23292119]
[49]
Renehan, A.G.; Yeh, H.C.; Johnson, J.A.; Wild, S.H.; Gale, E.A.M.; Møller, H. Diabetes and cancer (2): evaluating the impact of diabetes on mortality in patients with cancer. Diabetologia, 2012, 55(6), 1619-1632.
[http://dx.doi.org/10.1007/s00125-012-2526-0] [PMID: 22476948]
[50]
Liao, S.; Li, J.; Wang, L.; Zhang, Y.; Wang, C.; Hu, M.; Ma, B.; Wang, G.; Sun, S. Type 2 diabetes mellitus and characteristics of breast cancer in China. Asian Pac. J. Cancer Prev., 2010, 11(4), 933-937.
[PMID: 21133604]
[51]
Goodwin, P.J.; Ennis, M.; Pritchard, K.I.; Trudeau, M.E.; Koo, J.; Madarnas, Y.; Hartwick, W.; Hoffman, B.; Hood, N. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol., 2002, 20(1), 42-51.
[http://dx.doi.org/10.1200/JCO.2002.20.1.42] [PMID: 11773152]
[52]
Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; Njølstad, I.; Fletcher, A.; Nilsson, P.; Lewington, S.; Collins, R.; Gudnason, V.; Thompson, S.G.; Sattar, N.; Selvin, E.; Hu, F.B.; Danesh, J. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med., 2011, 364(9), 829-841.
[http://dx.doi.org/10.1056/NEJMoa1008862] [PMID: 21366474]
[53]
Zhou, X.H.; Qiao, Q.; Zethelius, B.; Pyörälä, K.; Söderberg, S.; Pajak, A.; Stehouwer, C.D.A.; Heine, R.J.; Jousilahti, P.; Ruotolo, G.; Nilsson, P.M.; Calori, G.; Tuomilehto, J. Diabetes, prediabetes and cancer mortality. Diabetologia, 2010, 53(9), 1867-1876.
[http://dx.doi.org/10.1007/s00125-010-1796-7] [PMID: 20490448]
[54]
Yang, X.R.; Chang-Claude, J.; Goode, E.L.; Couch, F.J.; Nevanlinna, H.; Milne, R.L.; Gaudet, M.; Schmidt, M.K.; Broeks, A.; Cox, A.; Fasching, P.A.; Hein, R.; Spurdle, A.B.; Blows, F.; Driver, K.; Flesch-Janys, D.; Heinz, J.; Sinn, P.; Vrieling, A.; Heikkinen, T.; Aittomäki, K.; Heikkilä, P.; Blomqvist, C.; Lissowska, J.; Peplonska, B.; Chanock, S.; Figueroa, J.; Brinton, L.; Hall, P.; Czene, K.; Humphreys, K.; Darabi, H.; Liu, J.; Van ’t Veer, L.J.; van Leeuwen, F.E.; Andrulis, I.L.; Glendon, G.; Knight, J.A.; Mulligan, A.M.; O’Malley, F.P.; Weerasooriya, N.; John, E.M.; Beckmann, M.W.; Hartmann, A.; Weihbrecht, S.B.; Wachter, D.L.; Jud, S.M.; Loehberg, C.R.; Baglietto, L.; English, D.R.; Giles, G.G.; McLean, C.A.; Severi, G.; Lambrechts, D.; Vandorpe, T.; Weltens, C.; Paridaens, R.; Smeets, A.; Neven, P.; Wildiers, H.; Wang, X.; Olson, J.E.; Cafourek, V.; Fredericksen, Z.; Kosel, M.; Vachon, C.; Cramp, H.E.; Connley, D.; Cross, S.S.; Balasubramanian, S.P.; Reed, M.W.; Dörk, T.; Bremer, M.; Meyer, A.; Karstens, J.H.; Ay, A.; Park-Simon, T.W.; Hillemanns, P.; Arias Pérez, J.I.; Menéndez Rodríguez, P.; Zamora, P.; Benítez, J.; Ko, Y.D.; Fischer, H.P.; Hamann, U.; Pesch, B.; Brüning, T.; Justenhoven, C.; Brauch, H.; Eccles, D.M.; Tapper, W.J.; Gerty, S.M.; Sawyer, E.J.; Tomlinson, I.P.; Jones, A.; Kerin, M.; Miller, N.; McInerney, N.; Anton-Culver, H.; Ziogas, A.; Shen, C.Y.; Hsiung, C.N.; Wu, P.E.; Yang, S.L.; Yu, J.C.; Chen, S.T.; Hsu, G.C.; Haiman, C.A.; Henderson, B.E.; Le Marchand, L.; Kolonel, L.N.; Lindblom, A.; Margolin, S.; Jakubowska, A.; Lubiński, J.; Huzarski, T.; Byrski, T.; Górski, B.; Gronwald, J.; Hooning, M.J.; Hollestelle, A.; van den Ouweland, A.M.; Jager, A.; Kriege, M.; Tilanus-Linthorst, M.M.; Collée, M.; Wang-Gohrke, S.; Pylkäs, K.; Jukkola-Vuorinen, A.; Mononen, K.; Grip, M.; Hirvikoski, P.; Winqvist, R.; Mannermaa, A.; Kosma, V.M.; Kauppinen, J.; Kataja, V.; Auvinen, P.; Soini, Y.; Sironen, R.; Bojesen, S.E.; Ørsted, D.D.; Kaur-Knudsen, D.; Flyger, H.; Nordestgaard, B.G.; Holland, H.; Chenevix-Trench, G.; Manoukian, S.; Barile, M.; Radice, P.; Hankinson, S.E.; Hunter, D.J.; Tamimi, R.; Sangrajrang, S.; Brennan, P.; McKay, J.; Odefrey, F.; Gaborieau, V.; Devilee, P.; Huijts, P.E.; Tollenaar, R.A.; Seynaeve, C.; Dite, G.S.; Apicella, C.; Hopper, J.L.; Hammet, F.; Tsimiklis, H.; Smith, L.D.; Southey, M.C.; Humphreys, M.K.; Easton, D.; Pharoah, P.; Sherman, M.E.; Garcia-Closas, M. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J. Natl. Cancer Inst., 2011, 103(3), 250-263.
[http://dx.doi.org/10.1093/jnci/djq526] [PMID: 21191117]
[55]
Phipps, A.I.; Buist, D.S.; Malone, K.E.; Barlow, W.E.; Porter, P.L.; Kerlikowske, K.; O’Meara, E.S.; Li, C.I. Breast density, body mass index, and risk of tumor marker-defined subtypes of breast cancer. Ann. Epidemiol., 2012, 22(5), 340-348.
[http://dx.doi.org/10.1016/j.annepidem.2012.02.002] [PMID: 22366170]
[56]
Rose, D.P.; Vona-Davis, L. The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression. Endocr. Relat. Cancer, 2012, 19(6), R225-R241.
[http://dx.doi.org/10.1530/ERC-12-0203] [PMID: 22936542]
[57]
Gapstur, S.M.; Patel, A.V.; Diver, W.R.; Hildebrand, J.S.; Gaudet, M.M.; Jacobs, E.J.; Campbell, P.T. Type II diabetes mellitus and the incidence of epithelial ovarian cancer in the cancer prevention study-II nutrition cohort. Cancer Epidemiol. Biomarkers Prev., 2012, 21(11), 2000-2005.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-0867] [PMID: 22941335]
[58]
Wotton, C.J.; Yeates, D.G.; Goldacre, M.J. Cancer in patients admitted to hospital with diabetes mellitus aged 30 years and over: record linkage studies. Diabetologia, 2011, 54(3), 527-534.
[http://dx.doi.org/10.1007/s00125-010-1987-2] [PMID: 21116605]
[59]
IDF Diabetes Atlas- 8th Edition, 2017. Available from: http://www.diabetesatlas.org/resources/2017-atlas.html
[60]
Aronoff, S.L.; Berkowitz, K.; Shreiner, B.; Want, L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr., 2004, 17, 183-190.
[http://dx.doi.org/10.2337/diaspect.17.3.183]
[61]
Heuson, J.C.; Coune, A.; Heimann, R. Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp. Cell Res., 1967, 45(2), 351-360.
[http://dx.doi.org/10.1016/0014-4827(67)90185-1] [PMID: 6021927]
[62]
Osborne, C.K.; Bolan, G.; Monaco, M.E.; Lippman, M.E. Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc. Natl. Acad. Sci. USA, 1976, 73(12), 4536-4540.
[http://dx.doi.org/10.1073/pnas.73.12.4536] [PMID: 1070004]
[63]
van der Burg, B.; Rutteman, G.R.; Blankenstein, M.A.; de Laat, S.W.; van Zoelen, E.J. Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J. Cell. Physiol., 1988, 134(1), 101-108.
[http://dx.doi.org/10.1002/jcp.1041340112] [PMID: 3275677]
[64]
Maassen, J.A.; Krans, H.M.; Möller, W. The effect of insulin, serum and dexamethasone on mRNA levels for the insulin receptor in the human lymphoblastoic cell line IM-9. Biochim. Biophys. Acta, 1987, 930(1), 72-78.
[http://dx.doi.org/10.1016/0167-4889(87)90157-1] [PMID: 3304429]
[65]
Okabayashi, Y.; Maddux, B.A.; McDonald, A.R.; Logsdon, C.D.; Williams, J.A.; Goldfine, I.D. Mechanisms of insulin-induced insulin-receptor downregulation. Decrease of receptor biosynthesis and mRNA levels. Diabetes, 1989, 38(2), 182-187.
[http://dx.doi.org/10.2337/diab.38.2.182] [PMID: 2644141]
[66]
Milazzo, G.; Giorgino, F.; Damante, G.; Sung, C.; Stampfer, M.R.; Vigneri, R.; Goldfine, I.D.; Belfiore, A. Insulin receptor expression and function in human breast cancer cell lines. Cancer Res., 1992, 52(14), 3924-3930.
[PMID: 1617668]
[67]
Belfiore, A.; Malaguarnera, R. Insulin receptor and cancer. Endocr. Relat. Cancer, 2011, 18(4), R125-R147.
[http://dx.doi.org/10.1530/ERC-11-0074] [PMID: 21606157]
[68]
Giorgino, F.; Belfiore, A.; Milazzo, G.; Costantino, A.; Maddux, B.; Whittaker, J.; Goldfine, I.D.; Vigneri, R. Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol. Endocrinol., 1991, 5(3), 452-459.
[http://dx.doi.org/10.1210/mend-5-3-452] [PMID: 1653897]
[69]
Rose, P.P.; Carroll, J.M.; Carroll, P.A.; DeFilippis, V.R.; Lagunoff, M.; Moses, A.V.; Roberts, C.T., Jr; Früh, K. The insulin receptor is essential for virus-induced tumorigenesis of Kaposi’s sarcoma. Oncogene, 2007, 26(14), 1995-2005.
[http://dx.doi.org/10.1038/sj.onc.1210006] [PMID: 17001305]
[70]
Mathieu, M.C.; Clark, G.M.; Allred, D.C.; Goldfine, I.D.; Vigneri, R. Insulin receptor expression and clinical outcome in node-negative breast cancer. Proc. Assoc. Am. Physicians, 1997, 109(6), 565-571.
[PMID: 9394418]
[71]
Law, J.H.; Habibi, G.; Hu, K.; Masoudi, H.; Wang, M.Y.; Stratford, A.L.; Park, E.; Gee, J.M.; Finlay, P.; Jones, H.E.; Nicholson, R.I.; Carboni, J.; Gottardis, M.; Pollak, M.; Dunn, S.E. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res., 2008, 68(24), 10238-10246.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2755] [PMID: 19074892]
[72]
Osborne, C.K.; Monaco, M.E.; Lippman, M.E.; Kahn, C.R. Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long-term tissue culture. Cancer Res., 1978, 38(1), 94-102.
[PMID: 22400]
[73]
Mountjoy, K.G.; Holdaway, I.M.; Finlay, G.J. Insulin receptor regulation in cultured human tumor cells. Cancer Res., 1983, 43(10), 4537-4542.
[PMID: 6349794]
[74]
Loeper, S.; Ezzat, S. Acromegaly: re-thinking the cancer risk. Rev. Endocr. Metab. Disord., 2008, 9(1), 41-58.
[http://dx.doi.org/10.1007/s11154-007-9063-z] [PMID: 18157698]
[75]
Rinaldi, S.; Cleveland, R.; Norat, T.; Biessy, C.; Rohrmann, S.; Linseisen, J.; Boeing, H.; Pischon, T.; Panico, S.; Agnoli, C.; Palli, D.; Tumino, R.; Vineis, P.; Peeters, P.H.; van Gils, C.H.; Bueno-de-Mesquita, B.H.; Vrieling, A.; Allen, N.E.; Roddam, A.; Bingham, S.; Khaw, K.T.; Manjer, J.; Borgquist, S.; Dumeaux, V.; Torhild Gram, I.; Lund, E.; Trichopoulou, A.; Makrygiannis, G.; Benetou, V.; Molina, E.; Donate Suárez, I.; Barricarte Gurrea, A.; Gonzalez, C.A.; Tormo, M.J.; Altzibar, J.M.; Olsen, A.; Tjonneland, A.; Grønbaek, H.; Overvad, K.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Morois, S.; Slimani, N.; Boffetta, P.; Jenab, M.; Riboli, E.; Kaaks, R. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int. J. Cancer, 2010, 126(7), 1702-1715.
[http://dx.doi.org/10.1002/ijc.24927] [PMID: 19810099]
[76]
Huang, Y.F.; Shen, M.R.; Hsu, K.F.; Cheng, Y.M.; Chou, C.Y. Clinical implications of insulin-like growth factor 1 system in early-stage cervical cancer. Br. J. Cancer, 2008, 99(7), 1096-1102.
[http://dx.doi.org/10.1038/sj.bjc.6604661] [PMID: 18781172]
[77]
Wu, Y.; Yakar, S.; Zhao, L.; Hennighausen, L.; LeRoith, D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res., 2002, 62(4), 1030-1035.
[PMID: 11861378]
[78]
Wu, Y.; Cui, K.; Miyoshi, K.; Hennighausen, L.; Green, J.E.; Setser, J.; LeRoith, D.; Yakar, S. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res., 2003, 63(15), 4384-4388.
[PMID: 12907608]
[79]
de Ostrovich, K.K.; Lambertz, I.; Colby, J.K.; Tian, J.; Rundhaug, J.E.; Johnston, D.; Conti, C.J.; DiGiovanni, J.; Fuchs-Young, R. Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. Am. J. Pathol., 2008, 173(3), 824-834.
[http://dx.doi.org/10.2353/ajpath.2008.071005] [PMID: 18688034]
[80]
Bhaskar, P.T.; Hay, N. The two TORCs and Akt. Dev. Cell, 2007, 12(4), 487-502.
[http://dx.doi.org/10.1016/j.devcel.2007.03.020] [PMID: 17419990]
[81]
Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell, 2007, 12(1), 9-22.
[http://dx.doi.org/10.1016/j.ccr.2007.05.008] [PMID: 17613433]
[82]
Efeyan, A.; Sabatini, D.M. mTOR and cancer: many loops in one pathway. Curr. Opin. Cell Biol., 2010, 22(2), 169-176.
[http://dx.doi.org/10.1016/j.ceb.2009.10.007] [PMID: 19945836]
[83]
Vogt, P.K. PI 3-kinase, mTOR, protein synthesis and cancer. Trends Mol. Med., 2001, 7(11), 482-484.
[http://dx.doi.org/10.1016/S1471-4914(01)02161-X] [PMID: 11689313]
[84]
Kenerson, H.L.; Aicher, L.D.; True, L.D.; Yeung, R.S. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res., 2002, 62(20), 5645-5650.
[PMID: 12384518]
[85]
Gao, N.; Flynn, D.C.; Zhang, Z.; Zhong, X.S.; Walker, V.; Liu, K.J.; Shi, X.; Jiang, B.H. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol., 2004, 287(2), C281-C291.
[http://dx.doi.org/10.1152/ajpcell.00422.2003] [PMID: 15028555]
[86]
Kremer, C.L.; Klein, R.R.; Mendelson, J.; Browne, W.; Samadzedeh, L.K.; Vanpatten, K.; Highstrom, L.; Pestano, G.A.; Nagle, R.B. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate, 2006, 66(11), 1203-1212.
[http://dx.doi.org/10.1002/pros.20410] [PMID: 16652388]
[87]
No, J.H.; Jeon, Y.T.; Park, I.A.; Kang, D.; Kim, J.W.; Park, N.H.; Kang, S.B.; Song, Y.S. Expression of mTOR protein and its clinical significance in endometrial cancer. Med. Sci. Monit., 2009, 15(10), BR301-BR305.
[PMID: 19789507]
[88]
Yu, G.; Wang, J.; Chen, Y.; Wang, X.; Pan, J.; Li, G.; Jia, Z.; Li, Q.; Yao, J.C.; Xie, K. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of chinese patients with gastric cancer. Clin. Cancer Res., 2009, 15(5), 1821-1829.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2138] [PMID: 19223493]
[89]
Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci., 2012, 13(2), 1886-1918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[90]
Alqurashi, N.; Gopalan, V.; Smith, R.A.; Lam, A.K. Clinical impacts of mammalian target of rapamycin expression in human colorectal cancers. Hum. Pathol., 2013, 44(10), 2089-2096.
[http://dx.doi.org/10.1016/j.humpath.2013.03.014] [PMID: 23773481]
[91]
Alvarez, M.; Roman, E.; Santos, E.S.; Raez, L.E. New targets for non-small-cell lung cancer therapy. Expert Rev. Anticancer Ther., 2007, 7(10), 1423-1437.
[http://dx.doi.org/10.1586/14737140.7.10.1423] [PMID: 17944567]
[92]
Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol., 2010, 28(6), 1075-1083.
[http://dx.doi.org/10.1200/JCO.2009.25.3641] [PMID: 20085938]
[93]
Dufour, M.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. Targeting the mammalian target of rapamycin (mTOR) in cancer therapy: lessons from past and future perspectives. Cancers (Basel), 2011, 3(2), 2478-2500.
[http://dx.doi.org/10.3390/cancers3022478] [PMID: 24212820]
[94]
Burris, H.A., III Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842.
[http://dx.doi.org/10.1007/s00280-012-2043-3] [PMID: 23377372]
[95]
Escudero, C.A.; Herlitz, K.; Troncoso, F.; Guevara, K.; Acurio, J.; Aguayo, C.; Godoy, A.S.; González, M. Pro-angiogenic role of insulin: from physiology to pathology. Front. Physiol., 2017, 8, 204.
[http://dx.doi.org/10.3389/fphys.2017.00204] [PMID: 28424632]
[96]
Treins, C.; Giorgetti-Peraldi, S.; Murdaca, J.; Semenza, G.L.; Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem., 2002, 277(31), 27975-27981.
[http://dx.doi.org/10.1074/jbc.M204152200] [PMID: 12032158]
[97]
Pilkis, S.J.; Granner, D.K. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol., 1992, 54, 885-909.
[http://dx.doi.org/10.1146/annurev.ph.54.030192.004321] [PMID: 1562196]
[98]
Sutherland, C.; O’Brien, R.M.; Granner, D.K. New connections in the regulation of PEPCK gene expression by insulin. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1336), 191-199.
[http://dx.doi.org/10.1098/rstb.1996.0016] [PMID: 8650266]
[99]
Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414(6865), 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[100]
Masuda, S.; Chikuma, M.; Sasaki, R. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes. Brain Res., 1997, 746(1-2), 63-70.
[http://dx.doi.org/10.1016/S0006-8993(96)01186-9] [PMID: 9037485]
[101]
Lu, M.; Amano, S.; Miyamoto, K.; Garland, R.; Keough, K.; Qin, W.; Adamis, A.P. Insulin-induced vascular endothelial growth factor expression in retina. Invest. Ophthalmol. Vis. Sci., 1999, 40(13), 3281-3286.
[PMID: 10586954]
[102]
Duh, E.; Aiello, L.P. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes, 1999, 48(10), 1899-1906.
[http://dx.doi.org/10.2337/diabetes.48.10.1899] [PMID: 10512352]
[103]
Ricketts, H.T. Does hyperglycemia harm the diabetic patient? Med. Clin. North Am., 1947, 31, 267-277.
[http://dx.doi.org/10.1016/S0025-7125(16)35832-1] [PMID: 20293070]
[104]
Berry, M.G.; Helwig, F.C. Marked insulin resistance in diabetes mellitus. Am. J. Med., 1948, 4(6), 923-926.
[http://dx.doi.org/10.1016/0002-9343(48)90490-2] [PMID: 18860412]
[105]
Ahmed, A.; Khan, T.E.; Yasmeen, T.; Awan, S.; Islam, N. Metabolic syndrome in type 2 diabetes: comparison of WHO, modified ATPIII & IDF criteria. J. Pak. Med. Assoc., 2012, 62(6), 569-574.
[PMID: 22755342]
[106]
Aldhafiri, F.; Al-Nasser, A.; Al-Sugair, A.; Al-Mutairi, H.; Young, D.; Reilly, J.J. Obesity and metabolic syndrome in adolescent survivors of standard risk childhood acute lymphoblastic leukemia in Saudi Arabia. Pediatr. Blood Cancer, 2012, 59(1), 133-137.
[http://dx.doi.org/10.1002/pbc.24012] [PMID: 22162511]
[107]
Zhang, B.; Roth, R.A. Binding properties of chimeric insulin receptors containing the cysteine-rich domain of either the insulin- like growth factor I receptor or the insulin receptor related receptor. Biochemistry, 1991, 30(21), 5113-5117.
[http://dx.doi.org/10.1021/bi00235a001] [PMID: 1645190]
[108]
Artim, S.C.; Mendrola, J.M.; Lemmon, M.A. Assessing the range of kinase autoinhibition mechanisms in the insulin receptor family. Biochem. J., 2012, 448(2), 213-220.
[http://dx.doi.org/10.1042/BJ20121365] [PMID: 22992069]
[109]
Djiogue, S.; Nwabo Kamdje, A.H.; Vecchio, L.; Kipanyula, M.J.; Farahna, M.; Aldebasi, Y.; Seke Etet, P.F. Insulin resistance and cancer: the role of insulin and IGFs. Endocr. Relat. Cancer, 2013, 20(1), R1-R17.
[http://dx.doi.org/10.1530/ERC-12-0324] [PMID: 23207292]
[110]
Kern, M.; Wells, J.A.; Stephens, J.M.; Elton, C.W.; Friedman, J.E.; Tapscott, E.B.; Pekala, P.H.; Dohm, G.L. Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. Biochem. J., 1990, 270(2), 397-400.
[http://dx.doi.org/10.1042/bj2700397] [PMID: 2205203]
[111]
Grover-McKay, M.; Walsh, S.A.; Seftor, E.A.; Thomas, P.A.; Hendrix, M.J. Role for glucose transporter 1 protein in human breast cancer. Pathol. Oncol. Res., 1998, 4(2), 115-120.
[http://dx.doi.org/10.1007/BF02904704] [PMID: 9654596]
[112]
Acharya, S.; Xu, J.; Wang, X.; Jain, S.; Wang, H.; Zhang, Q.; Chang, C.C.; Bower, J.; Arun, B.; Seewaldt, V.; Yu, D. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib. Am. J. Cancer Res., 2016, 6(5), 981-995.
[PMID: 27293993]
[113]
Calvo, M.B.; Figueroa, A.; Pulido, E.G.; Campelo, R.G.; Aparicio, L.A. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int. J. Endocrinol., 2010, 2010, 205357.
[http://dx.doi.org/10.1155/2010/205357] [PMID: 20706540]
[114]
Alvino, C.L.; Ong, S.C.; McNeil, K.A.; Delaine, C.; Booker, G.W.; Wallace, J.C.; Forbes, B.E. Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One, 2011, 6(11), e27488.
[http://dx.doi.org/10.1371/journal.pone.0027488] [PMID: 22140443]
[115]
Tan, B.X.; Yao, W.X.; Ge, J.; Peng, X.C.; Du, X.B.; Zhang, R.; Yao, B.; Xie, K.; Li, L.H.; Dong, H.; Gao, F.; Zhao, F.; Hou, J.M.; Su, J.M.; Liu, J.Y. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer, 2011, 117(22), 5103-5111.
[http://dx.doi.org/10.1002/cncr.26151] [PMID: 21523768]
[116]
Tzivion, G.; Dobson, M.; Ramakrishnan, G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta, 2011, 1813(11), 1938-1945.
[http://dx.doi.org/10.1016/j.bbamcr.2011.06.002] [PMID: 21708191]
[117]
Mu, N.; Zhu, Y.; Wang, Y.; Zhang, H.; Xue, F. Insulin resistance: a significant risk factor of endometrial cancer. Gynecol. Oncol., 2012, 125(3), 751-757.
[http://dx.doi.org/10.1016/j.ygyno.2012.03.032] [PMID: 22449736]
[118]
Bai, H.; Kang, P.; Tatar, M. Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell, 2012, 11(6), 978-985.
[http://dx.doi.org/10.1111/acel.12000] [PMID: 22935001]
[119]
Bolukbasi, E.; Vass, S.; Cobbe, N.; Nelson, B.; Simossis, V.; Dunbar, D.R.; Heck, M.M. Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling. Open Biol., 2012, 2(1), 110031.
[http://dx.doi.org/10.1098/rsob.110031] [PMID: 22645656]
[120]
Nunez, N.P.; Oh, W.J.; Rozenberg, J.; Perella, C.; Anver, M.; Barrett, J.C.; Perkins, S.N.; Berrigan, D.; Moitra, J.; Varticovski, L.; Hursting, S.D.; Vinson, C. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res., 2006, 66(10), 5469-5476.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4102] [PMID: 16707476]
[121]
Dool, C.J.; Mashhedi, H.; Zakikhani, M.; David, S.; Zhao, Y.; Birman, E.; Carboni, J.M.; Gottardis, M.; Blouin, M.J.; Pollak, M. IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer. Endocr. Relat. Cancer, 2011, 18(6), 699-709.
[http://dx.doi.org/10.1530/ERC-11-0136] [PMID: 21946410]
[122]
Faria, A.M.; Almeida, M.Q. Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults. Mol. Cell. Endocrinol., 2012, 351(1), 52-57.
[http://dx.doi.org/10.1016/j.mce.2011.09.040] [PMID: 22019901]
[123]
Ferguson, R.D.; Novosyadlyy, R.; Fierz, Y.; Alikhani, N.; Sun, H.; Yakar, S.; Leroith, D. Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res., 2012, 14(1), R8.
[http://dx.doi.org/10.1186/bcr3089] [PMID: 22226054]
[124]
Gallagher, E.J.; Fierz, Y.; Vijayakumar, A.; Haddad, N.; Yakar, S.; LeRoith, D. Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene, 2012, 31(27), 3213-3222.
[http://dx.doi.org/10.1038/onc.2011.495] [PMID: 22037215]
[125]
Fleming, H.E.; Janzen, V.; Lo Celso, C.; Guo, J.; Leahy, K.M.; Kronenberg, H.M.; Scadden, D.T. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2008, 2(3), 274-283.
[http://dx.doi.org/10.1016/j.stem.2008.01.003] [PMID: 18371452]
[126]
Ashihara, E.; Kawata, E.; Nakagawa, Y.; Shimazaski, C.; Kuroda, J.; Taniguchi, K.; Uchiyama, H.; Tanaka, R.; Yokota, A.; Takeuchi, M.; Kamitsuji, Y.; Inaba, T.; Taniwaki, M.; Kimura, S.; Maekawa, T. β-catenin small interfering RNA successfully suppressed progression of multiple myeloma in a mouse model. Clin. Cancer Res., 2009, 15(8), 2731-2738.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1350] [PMID: 19351774]
[127]
Rinderknecht, E.; Humbel, R.E. Primary structure of human insulin-like growth factor II. FEBS Lett., 1978, 89(2), 283-286.
[http://dx.doi.org/10.1016/0014-5793(78)80237-3] [PMID: 658418]
[128]
Blundell, T.L.; Bedarkar, S.; Rinderknecht, E.; Humbel, R.E. Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc. Natl. Acad. Sci. USA, 1978, 75(1), 180-184.
[http://dx.doi.org/10.1073/pnas.75.1.180] [PMID: 272633]
[129]
Sajid, W.; Kulahin, N.; Schluckebier, G.; Ribel, U.; Henderson, H.R.; Tatar, M.; Hansen, B.F.; Svendsen, A.M.; Kiselyov, V.V.; Nørgaard, P.; Wahlund, P.O.; Brandt, J.; Kohanski, R.A.; Andersen, A.S.; De Meyts, P. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J. Biol. Chem., 2011, 286(1), 661-673.
[http://dx.doi.org/10.1074/jbc.M110.156018] [PMID: 20974844]
[130]
Pierre Eugene, C.; Pagesy, P.; Nguyen, TT.; Neuille, M.; Tschank, G.; Tennagels, N.; Hampe, C.; Issad, T. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One, 2012, 7, 41992.
[http://dx.doi.org/10.1371/journal.pone.0041992]
[131]
Jackson, J.G.; Zhang, X.; Yoneda, T.; Yee, D. Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene, 2001, 20(50), 7318-7325.
[http://dx.doi.org/10.1038/sj.onc.1204920] [PMID: 11704861]
[132]
Campagnoli, C.; Biglia, N.; Belforte, P.; Botta, D.; Pedrini, E.; Sismondi, P. Post-menopausal breast cancer risk: oral estrogen treatment and abdominal obesity induce opposite changes in possibly important biological variables. Eur. J. Gynaecol. Oncol., 1992, 13(2), 139-154.
[PMID: 1587291]
[133]
Byrne, C.; Colditz, G.A.; Willett, W.C.; Speizer, F.E.; Pollak, M.; Hankinson, S.E. Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res., 2000, 60(14), 3744-3748.
[PMID: 10919644]
[134]
Duggan, C.; Wang, C.Y.; Neuhouser, M.L.; Xiao, L.; Smith, A.W.; Reding, K.W.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Ballard-Barbash, R.; McTiernan, A. Associations of insulin-like growth factor and insulin-like growth factor binding protein-3 with mortality in women with breast cancer. Int. J. Cancer, 2013, 132(5), 1191-1200.
[http://dx.doi.org/10.1002/ijc.27753] [PMID: 22847383]
[135]
Izzo, L.; Meggiorini, M.L.; Nofroni, I.; Pala, A.; De Felice, C.; Meloni, P.; Simari, T.; Izzo, S.; Pugliese, F.; Impara, L.; Merlini, G.; Di Cello, P.; Cipolla, V.; Forcione, A.R.; Paliotta, A.; Domenici, L.; Bolognese, A. Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features. G. Chir., 2012, 33(5), 153-162.
[PMID: 22709450]
[136]
Rosen, N.; Yee, D.; Lippman, M.E.; Paik, S.; Cullen, K.J. Insulin- like growth factors in human breast cancer. Breast Cancer Res. Treat., 1991, 18(Suppl. 1), S55-S62.
[http://dx.doi.org/10.1007/BF02633529] [PMID: 1651793]
[137]
Bruning, P.F.; Van Doorn, J.; Bonfrèr, J.M.; Van Noord, P.A.; Korse, C.M.; Linders, T.C.; Hart, A.A. Insulin-like growth-factor-binding protein 3 is decreased in early-stage operable pre- menopausal breast cancer. Int. J. Cancer, 1995, 62(3), 266-270.
[http://dx.doi.org/10.1002/ijc.2910620306] [PMID: 7543079]
[138]
Pasanisi, P.; Bruno, E.; Venturelli, E.; Manoukian, S.; Barile, M.; Peissel, B.; De Giacomi, C.; Bonanni, B.; Berrino, J.; Berrino, F. Serum levels of IGF-I and BRCA penetrance: a case control study in breast cancer families. Fam. Cancer, 2011, 10(3), 521-528.
[http://dx.doi.org/10.1007/s10689-011-9437-y] [PMID: 21455766]
[139]
Al-Delaimy, W.K.; Flatt, S.W.; Natarajan, L.; Laughlin, G.A.; Rock, C.L.; Gold, E.B.; Caan, B.J.; Parker, B.A.; Pierce, J.P. IGF1 and risk of additional breast cancer in the WHEL study. Endocr. Relat. Cancer, 2011, 18(2), 235-244.
[PMID: 21263044]
[140]
Trinconi, A.F.; Filassi, J.R.; Soares, J.M., Jr; Baracat, E.C. Evaluation of the insulin-like growth factors (IGF) IGF-I and IGF binding protein 3 in patients at high risk for breast cancer. Fertil. Steril., 2011, 95(8), 2753-2755.
[http://dx.doi.org/10.1016/j.fertnstert.2011.02.014] [PMID: 21392749]
[141]
Algire, C.; Amrein, L.; Bazile, M.; David, S.; Zakikhani, M.; Pollak, M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene, 2011, 30(10), 1174-1182.
[http://dx.doi.org/10.1038/onc.2010.483] [PMID: 21102522]
[142]
Byers, T.; Sedjo, R.L. Does intentional weight loss reduce cancer risk? Diabetes Obes. Metab., 2011, 13(12), 1063-1072.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01464.x] [PMID: 21733057]
[143]
Sakurai, T.; Kudo, M. Signaling pathways governing tumor angiogenesis. Oncology, 2011, 81(Suppl. 1), 24-29.
[http://dx.doi.org/10.1159/000333256] [PMID: 22212932]
[144]
Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer, 2012, 12(3), 159-169.
[http://dx.doi.org/10.1038/nrc3215] [PMID: 22337149]
[145]
Seke Etet, P.F.; Vecchio, L.; Nwabo Kamdje, A.H. Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell. Signal., 2012, 24(7), 1433-1443.
[http://dx.doi.org/10.1016/j.cellsig.2012.03.008] [PMID: 22446006]
[146]
Nagamani, M.; Stuart, C.A. Specific binding and growth-promoting activity of insulin in endometrial cancer cells in culture. Am. J. Obstet. Gynecol., 1998, 179(1), 6-12.
[http://dx.doi.org/10.1016/S0002-9378(98)70244-3] [PMID: 9704758]
[147]
Kalme, T.; Koistinen, H.; Loukovaara, M.; Koistinen, R.; Leinonen, P. Comparative studies on the regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) and sex hormone-binding globulin (SHBG) production by insulin and insulin-like growth factors in human hepatoma cells. J. Steroid Biochem. Mol. Biol., 2003, 86(2), 197-200.
[http://dx.doi.org/10.1016/S0960-0760(03)00268-1] [PMID: 14568572]
[148]
Furukawa, J.; Wraight, C.J.; Freier, S.M.; Peralta, E.; Atley, L.M.; Monia, B.P.; Gleave, M.E.; Cox, M.E. Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Prostate, 2010, 70(2), 206-218.
[http://dx.doi.org/10.1002/pros.21054] [PMID: 19790231]
[149]
Kim, J.S.; Kim, E.S.; Liu, D.; Lee, J.J.; Solis, L.; Behrens, C.; Lippman, S.M.; Hong, W.K.; Wistuba, I.I.; Lee, H.Y. Prognostic impact of insulin receptor expression on survival of patients with nonsmall cell lung cancer. Cancer, 2012, 118(9), 2454-2465.
[http://dx.doi.org/10.1002/cncr.26492] [PMID: 21952750]
[150]
Chappell, S.A.; Walsh, T.; Walker, R.A.; Shaw, J.A. Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas. Br. J. Cancer, 1997, 76(12), 1558-1561.
[http://dx.doi.org/10.1038/bjc.1997.596] [PMID: 9413941]
[151]
Cheng, I.; Stram, D.O.; Burtt, N.P.; Gianniny, L.; Garcia, R.R.; Pooler, L.; Henderson, B.E.; Le Marchand, L.; Haiman, C.A. IGF2R missense single-nucleotide polymorphisms and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev., 2009, 18(6), 1922-1924.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0253] [PMID: 19435860]
[152]
Singer, C.; Rasmussen, A.; Smith, H.S.; Lippman, M.E.; Lynch, H.T.; Cullen, K.J. Malignant breast epithelium selects for insulin- like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res., 1995, 55(11), 2448-2454.
[PMID: 7757999]
[153]
Schiller, H.B.; Szekeres, A.; Binder, B.R.; Stockinger, H.; Leksa, V. Mannose 6-phosphate/insulin-like growth factor 2 receptor limits cell invasion by controlling alphaVbeta3 integrin expression and proteolytic processing of urokinase-type plasminogen activator receptor. Mol. Biol. Cell, 2009, 20(3), 745-756.
[http://dx.doi.org/10.1091/mbc.e08-06-0569] [PMID: 19037107]
[154]
Pepper, M.S.; Vassalli, J.D.; Montesano, R.; Orci, L. Urokinase- type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell Biol., 1987, 105(6 Pt 1), 2535-2541.
[http://dx.doi.org/10.1083/jcb.105.6.2535] [PMID: 3121633]
[155]
Takano, S.; Gately, S.; Neville, M.E.; Herblin, W.F.; Gross, J.L.; Engelhard, H.; Perricone, M.; Eidsvoog, K.; Brem, S. Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res., 1994, 54(10), 2654-2660.
[PMID: 7513254]
[156]
Leksa, V.; Loewe, R.; Binder, B.; Schiller, H.B.; Eckerstorfer, P.; Forster, F.; Soler-Cardona, A.; Ondrovicová, G.; Kutejová, E.; Steinhuber, E.; Breuss, J.; Drach, J.; Petzelbauer, P.; Binder, B.R.; Stockinger, H. Soluble M6P/IGF2R released by TACE controls angiogenesis via blocking plasminogen activation. Circ. Res., 2011, 108(6), 676-685.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.234732] [PMID: 21273553]
[157]
Sonne, D.P.; Engstrøm, T.; Treiman, M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul. Pept., 2008, 146(1-3), 243-249.
[http://dx.doi.org/10.1016/j.regpep.2007.10.001] [PMID: 17976835]
[158]
Drucker, D.J. Glucagon-like peptides. Diabetes, 1998, 47(2), 159-169.
[http://dx.doi.org/10.2337/diab.47.2.159] [PMID: 9519708]
[159]
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940.
[http://dx.doi.org/10.2337/diacare.26.10.2929] [PMID: 14514604]
[160]
Deacon, C.F.; Nauck, M.A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J.J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 1995, 44(9), 1126-1131.
[http://dx.doi.org/10.2337/diab.44.9.1126] [PMID: 7657039]
[161]
Deacon, C.F.; Wamberg, S.; Bie, P.; Hughes, T.E.; Holst, J.J. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. J. Endocrinol., 2002, 172(2), 355-362.
[http://dx.doi.org/10.1677/joe.0.1720355] [PMID: 11834453]
[162]
Dardevet, D.; Moore, M.C.; Neal, D.; DiCostanzo, C.A.; Snead, W.; Cherrington, A.D. Insulin-independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am. J. Physiol. Endocrinol. Metab., 2004, 287(1), E75-E81.
[http://dx.doi.org/10.1152/ajpendo.00035.2004] [PMID: 15026303]
[163]
Sancho, V.; Trigo, M.V.; González, N.; Valverde, I.; Malaisse, W.J.; Villanueva-Peñacarrillo, M.L. Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. J. Mol. Endocrinol., 2005, 35(1), 27-38.
[http://dx.doi.org/10.1677/jme.1.01747] [PMID: 16087719]
[164]
Pannacciulli, N.; Le, D.S.; Salbe, A.D.; Chen, K.; Reiman, E.M.; Tataranni, P.A.; Krakoff, J. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage, 2007, 35(2), 511-517.
[http://dx.doi.org/10.1016/j.neuroimage.2006.12.035] [PMID: 17317222]
[165]
Brubaker, P.L.; Drucker, D.J. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology, 2004, 145(6), 2653-2659.
[http://dx.doi.org/10.1210/en.2004-0015] [PMID: 15044356]
[166]
He, W.; Yu, S.; Wang, L.; He, M.; Cao, X.; Li, Y.; Xiao, H. Exendin-4 inhibits growth and augments apoptosis of ovarian cancer cells. Mol. Cell. Endocrinol., 2016, 436, 240-249.
[http://dx.doi.org/10.1016/j.mce.2016.07.032] [PMID: 27496641]
[167]
Fidan-Yaylalı, G.; Dodurga, Y.; Seçme, M.; Elmas, L. Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells. Tumour Biol., 2016, 37(2), 2647-2653.
[http://dx.doi.org/10.1007/s13277-015-4104-9] [PMID: 26399993]
[168]
Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, pancreatic, and thyroid cancer with glucagon- like peptide-1-based therapies. Gastroenterology, 2011, 141(1), 150-156.
[http://dx.doi.org/10.1053/j.gastro.2011.02.018] [PMID: 21334333]
[169]
Koehler, J.A.; Kain, T.; Drucker, D.J. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology, 2011, 152(9), 3362-3372.
[http://dx.doi.org/10.1210/en.2011-1201] [PMID: 21771884]
[170]
Ligumsky, H.; Wolf, I.; Israeli, S.; Haimsohn, M.; Ferber, S.; Karasik, A.; Kaufman, B.; Rubinek, T. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res. Treat., 2012, 132(2), 449-461.
[http://dx.doi.org/10.1007/s10549-011-1585-0] [PMID: 21638053]
[171]
Nomiyama, T.; Kawanami, T.; Irie, S.; Hamaguchi, Y.; Terawaki, Y.; Murase, K.; Tsutsumi, Y.; Nagaishi, R.; Tanabe, M.; Morinaga, H.; Tanaka, T.; Mizoguchi, M.; Nabeshima, K.; Tanaka, M.; Yanase, T. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes, 2014, 63(11), 3891-3905.
[http://dx.doi.org/10.2337/db13-1169] [PMID: 24879833]
[172]
Honors, M.A.; Kinzig, K.P. Chronic exendin-4 treatment prevents the development of cancer cachexia symptoms in male rats bearing the Yoshida sarcoma. Horm. Cancer, 2014, 5(1), 33-41.
[http://dx.doi.org/10.1007/s12672-013-0163-9] [PMID: 24101584]
[173]
Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; Marks, D.; Mitch, W.E.; Muscaritoli, M.; Najand, A.; Ponikowski, P.; Rossi Fanelli, F.; Schambelan, M.; Schols, A.; Schuster, M.; Thomas, D.; Wolfe, R.; Anker, S.D. Cachexia: a new definition. Clin. Nutr., 2008, 27(6), 793-799.
[http://dx.doi.org/10.1016/j.clnu.2008.06.013] [PMID: 18718696]
[174]
Gordon, J.N.; Green, S.R.; Goggin, P.M. Cancer cachexia. QJM, 2005, 98(11), 779-788.
[http://dx.doi.org/10.1093/qjmed/hci127] [PMID: 16214835]
[175]
Ovesen, L.; Allingstrup, L.; Hannibal, J.; Mortensen, E.L.; Hansen, O.P. Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomized study. J. Clin. Oncol., 1993, 11(10), 2043-2049.
[http://dx.doi.org/10.1200/JCO.1993.11.10.2043] [PMID: 8410128]
[176]
Ovesen, L.; Hannibal, J.; Mortensen, E.L. The interrelationship of weight loss, dietary intake, and quality of life in ambulatory patients with cancer of the lung, breast, and ovary. Nutr. Cancer, 1993, 19(2), 159-167.
[http://dx.doi.org/10.1080/01635589309514246] [PMID: 8502586]
[177]
Ovesen, L.F.; Hannibal, J.G.; Sørensen, M.; Allingstrup, L. Fødeindtagelse, appetitnedsaettende symptomer og kemosensorisk taerskel hos cancerpatienter i kemoterapeutisk behandling. Ugeskr. Laeger, 1993, 155(11), 793-796. [Food intake, depressed appetite and chemosensory threshold in patients with cancer during chemotherapy].
[PMID: 8460430]
[178]
Matthys, P.; Billiau, A. Cytokines and cachexia. Nutrition, 1997, 13(9), 763-770.
[http://dx.doi.org/10.1016/S0899-9007(97)00185-8] [PMID: 9290087]
[179]
Nelson, D.; Ganss, R. Tumor growth or regression: powered by inflammation. J. Leukoc. Biol., 2006, 80(4), 685-690.
[http://dx.doi.org/10.1189/jlb.1105646] [PMID: 16864602]
[180]
He, L.; Law, P.T.Y.; Wong, C.K.; Chan, J.C.N.; Chan, P.K.S. Exendin-4 exhibits enhanced anti-tumor effects in diabetic mice. Sci. Rep., 2017, 7(1), 1791.
[http://dx.doi.org/10.1038/s41598-017-01952-5] [PMID: 28496193]
[181]
Koehler, J.A.; Drucker, D.J. Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells. Diabetes, 2006, 55(5), 1369-1379.
[http://dx.doi.org/10.2337/db05-1145] [PMID: 16644694]
[182]
Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; Terawaki, Y.; Tanabe, M.; Nabeshima, K.; Iwasaki, A.; Yanase, T. Exendin-4, a Glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology, 2017, 158(12), 4218-4232.
[http://dx.doi.org/10.1210/en.2017-00461] [PMID: 29045658]
[183]
Ling, J.; Kumar, R. Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett., 2012, 322(2), 119-126.
[http://dx.doi.org/10.1016/j.canlet.2012.02.033] [PMID: 22433713]
[184]
Kothare, P.A.; Linnebjerg, H.; Isaka, Y.; Uenaka, K.; Yamamura, A.; Yeo, K.P.; de la Peña, A.; Teng, C.H.; Mace, K.; Fineman, M.; Shigeta, H.; Sakata, Y.; Irie, S. Pharmacokinetics, pharmacodynamics, tolerability, and safety of exenatide in Japanese patients with type 2 diabetes mellitus. J. Clin. Pharmacol., 2008, 48(12), 1389-1399.
[http://dx.doi.org/10.1177/0091270008323750] [PMID: 19047364]
[185]
Lin, E.; Garmo, H.; Van Hemelrijck, M.; Adolfsson, J.; Stattin, P.; Zethelius, B.; Crawley, D. Association of type 2 diabetes mellitus and antidiabetic medication with risk of prostate cancer: a population-based case-control study. BMC Cancer, 2020, 20(1), 551.
[http://dx.doi.org/10.1186/s12885-020-07036-4] [PMID: 32539807]
[186]
He, W.; Li, J. Exendin-4 enhances radiation response of prostate cancer. Prostate, 2018, 78(15), 1125-1133.
[http://dx.doi.org/10.1002/pros.23687] [PMID: 30009503]
[187]
Funch, D.; Mortimer, K.; Li, L.; Norman, H.; Major-Pedersen, A.; Olsen, A.H.; Kaltoft, M.S.; Dore, D.D. Is there an association between liraglutide use and female breast cancer in a real-world setting? Diabetes Metab. Syndr. Obes., 2018, 11, 791-806.
[http://dx.doi.org/10.2147/DMSO.S171503] [PMID: 30538516]
[188]
Wilding, J.P.; Overgaard, R.V.; Jacobsen, L.V.; Jensen, C.B.; le Roux, C.W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab., 2016, 18(5), 491-499.
[http://dx.doi.org/10.1111/dom.12639] [PMID: 26833744]
[189]
Caparrotta, T.M.; Templeton, J.B.; Clay, T.A.; Wild, S.H.; Reynolds, R.M.; Webb, D.J.; Colhoun, H.M. Glucagon-like peptide 1 receptor agonist (GLP1RA) exposure and outcomes in type 2 diabetes: a systematic review of population-based observational studies. Diabetes Ther., 2021, 12(4), 969-989.
[http://dx.doi.org/10.1007/s13300-021-01021-1] [PMID: 33635502]
[190]
Shadboorestan, A.; Tarighi, P.; Koosha, M.; Faghihi, H.; Ghahremani, M.H.; Montazeri, H. Growth promotion and increased atp-binding cassette transporters expression by liraglutide in triple negative breast cancer cell line MDA-MB-231. Drug Res. (Stuttg.), 2021, 71(6), 307-311.
[http://dx.doi.org/10.1055/a-1345-7890] [PMID: 33477190]
[191]
Mertens-Talcott, S.U.; Chintharlapalli, S.; Li, X.; Safe, S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res., 2007, 67(22), 11001-11011.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2416] [PMID: 18006846]
[192]
Tang, W.; Yu, F.; Yao, H.; Cui, X.; Jiao, Y.; Lin, L.; Chen, J.; Yin, D.; Song, E.; Liu, Q. miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene, 2014, 33(20), 2629-2638.
[http://dx.doi.org/10.1038/onc.2013.214] [PMID: 23752185]
[193]
Fox, M.M.; Phoenix, K.N.; Kopsiaftis, S.G.; Claffey, K.P. AMP-Activated Protein Kinase α 2 Isoform Suppression in Primary Breast Cancer Alters AMPK Growth Control and Apoptotic Signaling. Genes Cancer, 2013, 4(1-2), 3-14.
[http://dx.doi.org/10.1177/1947601913486346] [PMID: 23946867]
[194]
Zhao, X.B.; Ren, G.S. Diabetes mellitus and prognosis in women with breast cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2016, 95(49), e5602.
[http://dx.doi.org/10.1097/MD.0000000000005602] [PMID: 27930583]
[195]
Frasca, F.; Pandini, G.; Sciacca, L.; Pezzino, V.; Squatrito, S.; Belfiore, A.; Vigneri, R. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem., 2008, 114(1), 23-37.
[http://dx.doi.org/10.1080/13813450801969715] [PMID: 18465356]
[196]
Drucker, D.J.; Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[197]
Mizutani, S.; Sumi, S.; Narita, O.; Tomoda, Y. Purification and properties of human placental dipeptidyl peptidase IV. Nippon Sanka Fujinka Gakkai Zasshi, 1985, 37(5), 769-775.
[PMID: 2860191]
[198]
Heike, M.; Möbius, U.; Knuth, A.; Meuer, S.; Meyer zum Büschenfelde, K.H. Tissue distribution of the T cell activation antigen Ta1. Serological, immunohistochemical and biochemical investigations. Clin. Exp. Immunol., 1988, 74(3), 431-434.
[PMID: 2466591]
[199]
Nemoto, E.; Sugawara, S.; Takada, H.; Shoji, S.; Horiuch, H. Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect. Immun., 1999, 67(12), 6225-6233.
[http://dx.doi.org/10.1128/IAI.67.12.6225-6233.1999] [PMID: 10569731]
[200]
Varona, A.; Blanco, L.; Perez, I.; Gil, J.; Irazusta, J.; López, J.I.; Candenas, M.L.; Pinto, F.M.; Larrinaga, G. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer, 2010, 10, 193.
[http://dx.doi.org/10.1186/1471-2407-10-193] [PMID: 20459800]
[201]
Hanski, C.; Huhle, T.; Gossrau, R.; Reutter, W. Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp. Cell Res., 1988, 178(1), 64-72.
[http://dx.doi.org/10.1016/0014-4827(88)90378-3] [PMID: 2900773]
[202]
Piazza, G.A.; Callanan, H.M.; Mowery, J.; Hixson, D.C. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem. J., 1989, 262(1), 327-334.
[http://dx.doi.org/10.1042/bj2620327] [PMID: 2573346]
[203]
Chen, W.T.; Lee, C.C.; Goldstein, L.; Bernier, S.; Liu, C.H.; Lin, C.Y.; Yeh, Y.; Monsky, W.L.; Kelly, T.; Dai, M. Membrane proteases as potential diagnostic and therapeutic targets for breast malignancy. Breast Cancer Res. Treat., 1994, 31(2-3), 217-226.
[http://dx.doi.org/10.1007/BF00666155] [PMID: 7881100]
[204]
Johnson, R.C.; Zhu, D.; Augustin-Voss, H.G.; Pauli, B.U. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J. Cell Biol., 1993, 121(6), 1423-1432.
[http://dx.doi.org/10.1083/jcb.121.6.1423] [PMID: 8099589]
[205]
Cheng, H.C.; Abdel-Ghany, M.; Elble, R.C.; Pauli, B.U. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J. Biol. Chem., 1998, 273(37), 24207-24215.
[http://dx.doi.org/10.1074/jbc.273.37.24207] [PMID: 9727044]
[206]
Cheng, H.C.; Abdel-Ghany, M.; Zhang, S.; Pauli, B.U. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clin. Exp. Metastasis, 1999, 17(7), 609-615.
[http://dx.doi.org/10.1023/A:1006757525190] [PMID: 10845560]
[207]
Cheng, H.C.; Abdel-Ghany, M.; Pauli, B.U. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J. Biol. Chem., 2003, 278(27), 24600-24607.
[http://dx.doi.org/10.1074/jbc.M303424200] [PMID: 12716896]
[208]
Chang, Y.H.; Lee, S.H.; Liao, I.C.; Huang, S.H.; Cheng, H.C.; Liao, P.C. Secretomic analysis identifies alpha-1 antitrypsin (A1AT) as a required protein in cancer cell migration, invasion, and pericellular fibronectin assembly for facilitating lung colonization of lung adenocarcinoma cells. Mol. Cell. Proteomics, 2012, 11(11), 1320-1339.
[http://dx.doi.org/10.1074/mcp.M112.017384] [PMID: 22896658]
[209]
Hung, T.T.; Wu, J.Y.; Liu, J.F.; Cheng, H.C. Epitope analysis of the rat dipeptidyl peptidase IV monoclonal antibody 6A3 that blocks pericellular fibronectin-mediated cancer cell adhesion. FEBS J., 2009, 276(22), 6548-6559.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07352.x] [PMID: 19804410]
[210]
Abdel-Ghany, M.; Cheng, H.; Levine, R.A.; Pauli, B.U. Truncated dipeptidyl peptidase IV is a potent anti-adhesion and anti-metastasis peptide for rat breast cancer cells. Invasion Metastasis, 1998, 18(1), 35-43.
[http://dx.doi.org/10.1159/000024497] [PMID: 10207249]
[211]
Choi, H.J.; Kim, J.Y.; Lim, S.C.; Kim, G.; Yun, H.J.; Choi, H.S. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br. J. Pharmacol., 2015, 172(21), 5096-5109.
[http://dx.doi.org/10.1111/bph.13274] [PMID: 26267432]
[212]
Lu, K.P.; Zhou, X.Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 904-916.
[http://dx.doi.org/10.1038/nrm2261] [PMID: 17878917]
[213]
Liou, Y.C.; Zhou, X.Z.; Lu, K.P. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem. Sci., 2011, 36(10), 501-514.
[http://dx.doi.org/10.1016/j.tibs.2011.07.001] [PMID: 21852138]
[214]
Wulf, G.M.; Ryo, A.; Wulf, G.G.; Lee, S.W.; Niu, T.; Petkova, V.; Lu, K.P. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J., 2001, 20(13), 3459-3472.
[http://dx.doi.org/10.1093/emboj/20.13.3459] [PMID: 11432833]
[215]
Zheng, H.; You, H.; Zhou, X.Z.; Murray, S.A.; Uchida, T.; Wulf, G.; Gu, L.; Tang, X.; Lu, K.P.; Xiao, Z.X. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature, 2002, 419(6909), 849-853.
[http://dx.doi.org/10.1038/nature01116] [PMID: 12397361]
[216]
Ryo, A.; Suizu, F.; Yoshida, Y.; Perrem, K.; Liou, Y.C.; Wulf, G.; Rottapel, R.; Yamaoka, S.; Lu, K.P. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell, 2003, 12(6), 1413-1426.
[http://dx.doi.org/10.1016/S1097-2765(03)00490-8] [PMID: 14690596]
[217]
Fukuchi, M.; Fukai, Y.; Kimura, H.; Sohda, M.; Miyazaki, T.; Nakajima, M.; Masuda, N.; Tsukada, K.; Kato, H.; Kuwano, H. Prolyl isomerase Pin1 expression predicts prognosis in patients with esophageal squamous cell carcinoma and correlates with cyclinD1 expression. Int. J. Oncol., 2006, 29(2), 329-334.
[http://dx.doi.org/10.3892/ijo.29.2.329] [PMID: 16820873]
[218]
Khanal, P.; Namgoong, G.M.; Kang, B.S.; Woo, E.R.; Choi, H.S. The prolyl isomerase Pin1 enhances HER-2 expression and cellular transformation via its interaction with mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1. Mol. Cancer Ther., 2010, 9(3), 606-616.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0560] [PMID: 20179161]
[219]
Kim, K.; Kim, G.; Kim, J.Y.; Yun, H.J.; Lim, S.C.; Choi, H.S. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis, 2014, 35(6), 1352-1361.
[http://dx.doi.org/10.1093/carcin/bgu044] [PMID: 24517997]
[220]
Russo, J.W.; Gao, C.; Bhasin, S.S.; Voznesensky, O.S.; Calagua, C.; Arai, S.; Nelson, P.S.; Montgomery, B.; Mostaghel, E.A.; Corey, E.; Taplin, M.E.; Ye, H.; Bhasin, M.; Balk, S.P. Downregulation of dipeptidyl peptidase 4 accelerates progression to castration-resistant prostate cancer. Cancer Res., 2018, 78(22), 6354-6362.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0687] [PMID: 30242112]
[221]
Yang, F.; Takagaki, Y.; Yoshitomi, Y.; Ikeda, T.; Li, J.; Kitada, M.; Kumagai, A.; Kawakita, E.; Shi, S.; Kanasaki, K.; Koya, D. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res., 2019, 79(4), 735-746.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0620] [PMID: 30584072]
[222]
Shah, C.; Hong, Y.R.; Bishnoi, R.; Ali, A.; Skelton, W.P., IV; Dang, L.H.; Huo, J.; Dang, N.H. Impact of DPP4 inhibitors in survival of patients with prostate, pancreas, and breast cancer. Front. Oncol., 2020, 10, 405.
[http://dx.doi.org/10.3389/fonc.2020.00405] [PMID: 32296640]
[223]
Tseng, C.H. Sitagliptin may reduce breast cancer risk in women with type 2 diabetes. Clin. Breast Cancer, 2017, 17(3), 211-218.
[http://dx.doi.org/10.1016/j.clbc.2016.11.002] [PMID: 27986440]
[224]
Barreira da Silva, R.; Laird, M.E.; Yatim, N.; Fiette, L.; Ingersoll, M.A.; Albert, M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol., 2015, 16(8), 850-858.
[http://dx.doi.org/10.1038/ni.3201] [PMID: 26075911]
[225]
Hollande, C.; Boussier, J.; Ziai, J.; Nozawa, T.; Bondet, V.; Phung, W.; Lu, B.; Duffy, D.; Paradis, V.; Mallet, V.; Eberl, G.; Sandoval, W.; Schartner, J.M.; Pol, S.; Barreira da Silva, R.; Albert, M.L. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol., 2019, 20(3), 257-264.
[http://dx.doi.org/10.1038/s41590-019-0321-5] [PMID: 30778250]
[226]
Vanheule, V.; Metzemaekers, M.; Janssens, R.; Struyf, S.; Proost, P. How post-translational modifications influence the biological activity of chemokines. Cytokine, 2018, 109, 29-51.
[http://dx.doi.org/10.1016/j.cyto.2018.02.026] [PMID: 29903573]
[227]
Lam, C.S.; Cheung, A.H.; Wong, S.K.; Wan, T.M.; Ng, L.; Chow, A.K.; Cheng, N.S.; Pak, R.C.; Li, H.S.; Man, J.H.; Yau, T.C.; Lo, O.S.; Poon, J.T.; Pang, R.W.; Law, W.L. Prognostic significance of CD26 in patients with colorectal cancer. PLoS One, 2014, 9(5), e98582.
[http://dx.doi.org/10.1371/journal.pone.0098582] [PMID: 24870408]
[228]
Liang, P.I.; Yeh, B.W.; Li, W.M.; Chan, T.C.; Chang, I.W.; Huang, C.N.; Li, C.C.; Ke, H.L.; Yeh, H.C.; Wu, W.J.; Li, C.F. DPP4/CD26 overexpression in urothelial carcinoma confers an independent prognostic impact and correlates with intrinsic biological aggressiveness. Oncotarget, 2017, 8(2), 2995-3008.
[http://dx.doi.org/10.18632/oncotarget.13820] [PMID: 27936466]
[229]
Yamaguchi, U.; Nakayama, R.; Honda, K.; Ichikawa, H.; Hasegawa, T.; Shitashige, M.; Ono, M.; Shoji, A.; Sakuma, T.; Kuwabara, H.; Shimada, Y.; Sasako, M.; Shimoda, T.; Kawai, A.; Hirohashi, S.; Yamada, T. Distinct gene expression-defined classes of gastrointestinal stromal tumor. J. Clin. Oncol., 2008, 26(25), 4100-4108.
[http://dx.doi.org/10.1200/JCO.2007.14.2331] [PMID: 18757323]
[230]
Nishina, S.; Yamauchi, A.; Kawaguchi, T.; Kaku, K.; Goto, M.; Sasaki, K.; Hara, Y.; Tomiyama, Y.; Kuribayashi, F.; Torimura, T.; Hino, K. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell. Mol. Gastroenterol. Hepatol., 2018, 7(1), 115-134.
[http://dx.doi.org/10.1016/j.jcmgh.2018.08.008] [PMID: 30510994]
[231]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. (Lond.), 2010, 7, 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[232]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[233]
Gaude, E.; Frezza, C. Defects in mitochondrial metabolism and cancer. Cancer Metab., 2014, 2, 10.
[http://dx.doi.org/10.1186/2049-3002-2-10] [PMID: 25057353]
[234]
Apaijai, N.; Pintana, H.; Chattipakorn, S.C.; Chattipakorn, N. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats. Br. J. Pharmacol., 2013, 169(5), 1048-1057.
[http://dx.doi.org/10.1111/bph.12176] [PMID: 23488656]
[235]
Abuelezz, S.A.; Hendawy, N.; Abdel Gawad, S. Alleviation of renal mitochondrial dysfunction and apoptosis underlies the protective effect of sitagliptin in gentamicin-induced nephrotoxicity. J. Pharm. Pharmacol., 2016, 68(4), 523-532.
[http://dx.doi.org/10.1111/jphp.12534] [PMID: 27019059]
[236]
Weng, G.; Zhou, B.; Liu, T.; Huang, Z.; Yang, H. Sitagliptin promotes mitochondrial biogenesis in human SH-SY5Y cells by increasing the expression of PGC-1α/NRF1/TFAM. IUBMB Life, 2019, 71(10), 1515-1521.
[http://dx.doi.org/10.1002/iub.2076] [PMID: 31290617]
[237]
Li, Y.; Li, Y.; Li, D.; Li, K.; Quan, Z.; Wang, Z.; Sun, Z. Repositioning of hypoglycemic drug linagliptin for cancer treatment. Front. Pharmacol., 2020, 11, 187.
[http://dx.doi.org/10.3389/fphar.2020.00187] [PMID: 32194417]