Synthesis, Characterization, Antitumor Potential, BSA and DNA Binding Properties, and Molecular Docking Study of Some Novel 3-Hydroxy-3- Pyrrolin-2-Ones

Page: [337 - 352] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: In order to make progress in discovering the new agents for cancer treatment with improved properties and considering the fact that 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, we tested series of eleven novels 1,5-diaryl-4-(2- thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones for their antitumor potential.

Methods: All novel compounds were characterized by spectral (IR, NMR, MS) and elemental analysis. All novel 3-hydroxy-3-pyrrolin-2-ones were screened for their cytotoxic activity on two cancer cell lines, SW480 and MDA-MB 231, and non-transformed fibroblasts (MRC-5).

Results: Compounds B8, B9, and B10 showed high cytotoxicity on SW480 cells together with good selectivity towards MRC-5 cells. It is important to empathize that the degree of selectivity of B8 and B10 was high (SI = 5.54 and 12.09, respectively). Besides, we explored the mechanisms of cytotoxicity of novel derivatives, B8, B9, and B10. The assay showed that tested derivatives induce an apoptotic type of cell death in SW480 cells, with a minor percent of necrotic cells. Additionally, to better understand the suitability of the compounds for potential use as anticancer medicaments, we studied their interactions with biomacromolecules (DNA or BSA). The results indicated that the tested compounds have a great affinity to displace EB from the EB-DNA complex through intercalation. Also, DNA and BSA molecular docking study was performed to predict the binding mode and the interaction region of the compounds.

Conclusion: Achieved results indicate that our compounds have the potential to become candidates for use as medicaments.

Keywords: 3-hydroxy-3-pyrrolin-2-ones, biological evaluation, mechanisms of cytotoxic activity, DNA binding study, BSAbinding study, molecular docking study.

Graphical Abstract

[1]
Chiosis, G.; Caldas Lopes, E.; Solit, D. Heat shock protein-90 inhibitors: a chronicle from geldanamycin to today’s agents. Curr. Opin. Investig. Drugs, 2006, 7(6), 534-541.
[PMID: 16784024]
[2]
Gein, V.L.; Platonov, V.S.; Voronina, É.V. Synthesis and antimicrobial activity of 1,5-diaryl-4-heteroyl-3-hodroxy-3-pirolin-2-ones. Pharm. Chem. J., 2004, 38, 316-318.
[http://dx.doi.org/10.1023/B:PHAC.0000048143.40360.9c]
[3]
Gein, V.L.; Mihalev, V.A.; Kasimova, N.N.; Voronina, E.V.; Vakhrin, M.I.; Babushkina, E.B. Synthesis and antibacterial activity of 1-alxoxyalkyl-5-aryl-4-acyl-3-hydroxy-3-pyrrolin-2-ones. Pharm. Chem. J., 2007, 41, 208-210.
[http://dx.doi.org/10.1007/s11094-007-0047-9]
[4]
Gein, V.L.; Bobyleva, A.A.; Levandovskaya, E.B.; Odegova, T.F.; Vakhrin, M.I. Synthesis and antimicrobial activity of 5-aryl-4-acyl(heteroyl)-3-hydroxy-1-(3-ethoxypropyl)-3-pyrrolin-2-ones. Pharm. Chem. J., 2012, 46, 23-25.
[http://dx.doi.org/10.1007/s11094-012-0728-x]
[5]
Gein, V.L.; Odegova, T.F.; Rogachev, S.N.; Bobyleva, A.A.; Gein, L.F. Synthesis and antimicrobial activity of 5-aryl-4-acyl-3-hydroxy-1-[2-(3-hidrohyethoxy)-ethyl]-3-pyrrolin-2-ones. Pharm. Chem. J., 2015, 49, 175-177.
[http://dx.doi.org/10.1007/s11094-015-1248-2]
[6]
Joksimović, N.; Petronijević, J.; Janković, N.; Baskić, D.; Popović, S.; Todorović, D.; Matić, S.; Bogdanović, G.A.; Vraneš, M.; Tot, A.; Bugarčić, Z. Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study. Bioorg. Chem., 2019, 88, 102954-102968.
[http://dx.doi.org/10.1016/j.bioorg.2019.102954] [PMID: 31054428]
[7]
Gein, V.L.; Shumilovskikh, E.V.; Andreichikov, Yu.S.; Saraeva, R.F.; Korobchenko, L.V.; Vladyko, G.V.; Boreko, E.I. Synthesis of 4-substituted 1-methyl-5-aryl- and 1,5-diaryltetrahydropyrrole-2,3-diones and their antiviral action. Pharm. Chem. J., 1991, 25, 884-887.
[http://dx.doi.org/10.1007/BF00778979]
[8]
Gein, V.L.; Voronina, O.V.; Ryumina, T.E.; Novoselova, G.N.; Potemkin, K.D.; Andreichikov, Y.S. Synthesis and Antimicrobial Activity of 1,5-Diaryl-3-Hydroxy-2-Oxo-3-Pyrroline-4-Carboxylic Acids and Their Derivatives. Pharm. Chem. J., 1996, 30, 95-96.
[http://dx.doi.org/10.1007/BF02218875]
[9]
Gein, V.L.; Popov, A.V.; Kolla, V.É.; Popova, N.A.; Potemkin, K.D. Synthesis and biological activity of 1,5-diaryl-3-arylamino-4-carboxymethyl-2,5-dihydro-2-pyrrolones and 1,5-diaryl-4-carboxymethyltetrahydropyrrole-2, 3-diones. Pharm. Chem. J., 1993, 27, 343-346.
[http://dx.doi.org/10.1007/BF00819965]
[10]
Zhao, Y.; Wang, Q.; Meng, Q.; Ding, D.; Yang, H.; Gao, G.; Li, D.; Zhu, W.; Zhou, H. Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis. Bioorg. Med. Chem., 2012, 20(3), 1240-1250.
[http://dx.doi.org/10.1016/j.bmc.2011.12.035] [PMID: 22249121]
[11]
Brown, C.S.; Lee, M.S.; Leung, D.W.; Wang, T.; Xu, W.; Luthra, P.; Anantpadma, M.; Shabman, R.S.; Melito, L.M.; MacMillan, K.S.; Borek, D.M.; Otwinowski, Z.; Ramanan, P.; Stubbs, A.J.; Peterson, D.S.; Binning, J.M.; Tonelli, M.; Olson, M.A.; Davey, R.A.; Ready, J.M.; Basler, C.F.; Amarasinghe, G.K. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J. Mol. Biol., 2014, 426(10), 2045-2058.
[http://dx.doi.org/10.1016/j.jmb.2014.01.010] [PMID: 24495995]
[12]
Starosyla, S.A.; Volynets, G.P.; Lukashov, S.S.; Gorbatiuk, O.B.; Golub, A.G.; Bdzhola, V.G.; Yarmoluk, S.M. Identification of apoptosis signal-regulating kinase 1 (ASK1) inhibitors among the derivatives of benzothiazol-2-yl-3-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one. Bioorg. Med. Chem., 2015, 23(10), 2489-2497.
[http://dx.doi.org/10.1016/j.bmc.2015.03.056] [PMID: 25882527]
[13]
Zimmerman, S.S.; Khatri, A.; Garnier-Amblard, E.C.; Mullasseril, P.; Kurtkaya, N.L.; Gyoneva, S.; Hansen, K.B.; Traynelis, S.F.; Liotta, D.C. Design, synthesis, and structure-activity relationship of a novel series of GluN2C-selective potentiators. J. Med. Chem., 2014, 57(6), 2334-2356.
[http://dx.doi.org/10.1021/jm401695d] [PMID: 24512267]
[14]
Burmudzija, A.; Ratković, Z.; Muškinja, J.; Janković, N.; Ranković, B.; Kosanić, M.; Đorđević, S. Ferrocenyl based pyrazoline derivatives with vanillic core: synthesis and investigation of their biological properties. RSC Advances, 2016, 6, 91420-91430.
[http://dx.doi.org/10.1039/C6RA18977F]
[15]
Joksimović, N.; Baskić, D.; Popović, S.; Zarić, M.; Kosanić, M.; Ranković, B.; Stanojković, T.; Novaković, S.B.; Davidović, G.; Bugarčić, Z.; Janković, N. Synthesis, characterization, biological activity, DNA and BSA binding study: Novel copper(ii) complexes with 2-hydroxy-4-aryl-4-oxo-2-butenoate. Dalton Trans., 2016, 45(38), 15067-15077.
[http://dx.doi.org/10.1039/C6DT02257J] [PMID: 27711668]
[16]
Joksimović, N.; Janković, N.; Petronijević, J.; Baskić, D.; Popovic, S.; Todorović, D.; Zarić, M.; Klisurić, O.; Vraneš, M.; Tot, A.; Bugarčić, Z. Synthesis, anticancer evaluation and synergistic effects with cisplatin of novel palladium complexes: DNA, BSA interactions and molecular docking study. Med. Chem., 2020, 16(1), 78-92.
[http://dx.doi.org/10.2174/1573406415666190128095732] [PMID: 30686264]
[17]
Kandagal, P.B.; Ashoka, S.; Seetharamappa, J.; Shaikh, S.M.; Jadegoud, Y.; Ijare, O.B. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J. Pharm. Biomed. Anal., 2006, 41(2), 393-399.
[http://dx.doi.org/10.1016/j.jpba.2005.11.037] [PMID: 16413740]
[18]
Joksimović, N.; Petronijević, J.; Janković, N.; Kosanić, M.; Milivojević, D.; Vraneš, M.; Tot, A.; Bugarčić, Z. Synthesis, characterization, antioxidant activity of β-diketonates, and effects of coordination to copper(II) ion on their activity: DNA, BSA interactions and molecular docking study. Med. Chem., 2021, 17(5), 519-532.
[http://dx.doi.org/10.2174/1573406415666191024102520] [PMID: 31696810]
[19]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[20]
Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol., 2005, 101(1-3), 95-99.
[http://dx.doi.org/10.1016/j.jep.2005.03.011] [PMID: 15878245]
[21]
Rai, S.; Manjithaya, R. Fluorescence microscopy: A tool to study autophagy. AIP Adv., 2015, 5084804
[http://dx.doi.org/10.1063/1.4928185]
[22]
Boys, F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 1970, 19, 553-566.
[http://dx.doi.org/10.1080/00268977000101561]
[23]
Schrödinger Suite Protein Preparation Wizard; Schrödinger, LLC: New York, NY, 2015.
[24]
Rostkowski, M.; Olsson, M.H.; Søndergaard, C.R.; Jensen, J.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol., 2011, 11, 6.
[http://dx.doi.org/10.1186/1472-6807-11-6] [PMID: 21269479]
[25]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6665-6670.
[http://dx.doi.org/10.1073/pnas.0408037102] [PMID: 15870211]
[26]
Schrödinger Suite. Glide; Schrödinger, LLC: New York, NY, 2015.
[27]
Elokely, K.M.; Doerksen, R.J. Docking challenge: protein sampling and molecular docking performance. J. Chem. Inf. Model., 2013, 53(8), 1934-1945.
[http://dx.doi.org/10.1021/ci400040d] [PMID: 23530568]
[28]
Gein, V.L.; Maryasov, M.A. Reactions of 5-Aryl-4-(hetaren-2-ylcarbonyl)-3-hydroxy-1-(1,3-thiazol-2-yl)-2,5-dihydro-1H-pyrrol-2-ones with Hydrazine, Phenylhydrazine, and Hydroxylamine. Russ. J. Org. Chem., 2015, 51, 110-115.
[http://dx.doi.org/10.1134/S1070428015010194]
[29]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 150845-150868.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[30]
Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia, 2000, 2(4), 291-299.
[http://dx.doi.org/10.1038/sj.neo.7900101] [PMID: 11005563]
[31]
Thomé, M.P.; Filippi-Chiela, E.C.; Villodre, E.S.; Migliavaca, C.B.; Onzi, G.R.; Felipe, K.B.; Lenz, G. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J. Cell Sci., 2016, 129(24), 4622-4632.
[http://dx.doi.org/10.1242/jcs.195057] [PMID: 27875278]
[32]
Lakowicz, J.R.; Weber, G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 1973, 12(21), 4161-4170.
[http://dx.doi.org/10.1021/bi00745a020] [PMID: 4795686]
[33]
Petronijević, J.; Janković, N.; Stanojković, T.P.; Joksimović, N.; Grozdanić, N.Đ.; Vraneš, M.; Tot, A.; Bugarčić, Z. Biological evaluation of selected 3,4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-1,4-benzoxazin-2-ones: molecular docking study. Arch. Pharm. Chem. Life Sci., 2018, 351(5)e1700308
[http://dx.doi.org/10.1002/ardp.201700308]
[34]
Bhattacharya, B.; Nakka, S.; Guruprasad, L.; Samanta, A. Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking studies. J. Phys. Chem. B, 2009, 113(7), 2143-2150.
[http://dx.doi.org/10.1021/jp808611b] [PMID: 19199686]