Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway

Page: [86 - 95] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Non-Small-Cell Lung Cancer (NSCLC) is the most prevalent form of lung cancer, accounting for approximately 85% of all lung cancer cases and resulting in high morbidity and mortality. Previous studies have demonstrated that 1,25-dihydroxy-vitamin-D3 (vitamin D) exhibited anti-cancer activity against breast and prostate cancer.

Objectives: The aim of the current study is to investigate the effect of vitamin D on NSCLC and its underlying mechanism.

Methods: The effects of vitamin D on stemness maintenance and the Warburg effect in NSCLC cells were investigated both in vitro and in vivo.

Results and Discussion: In vitro experiments revealed that vitamin D inhibited glycolysis and stemness maintenance in A549 and NCI-H1975 cells. Both in vitro and in vivo experiments indicated that vitamin D attenuated the expression of metabolism-related enzymes associated with the Warburg effect (GLUT1, LDHA, HK2, and PKM2). In addition, vitamin D down-regulated the expression of stemness-related genes (Oct-4, SOX-2, and Nanog) and the expression of PI3K, AKT, and mTOR.

Conclusion: Overall, these findings suggest that vitamin D suppresses the Warburg effect and stemness maintenance in NSCLC cells via the inactivation of PI3K/AKT/mTOR signaling, thereby inhibiting the progression of NSCLC. The current study indicates that vitamin D is a potential candidate in therapeutic strategies against NSCLC.

Keywords: 1, 25-dihydroxy-vitamin-D3, non-small cell lung cancer, Warburg effect, cancer stem cell, PI3K/AKT/mTOR, stemness maintenance.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ku, B.M.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. An update on biomarkers for kinase inhibitor response in non-small- cell lung cancer. Expert Rev. Mol. Diagn., 2017, 17(10), 933-942.
[http://dx.doi.org/10.1080/14737159.2017.1372196] [PMID: 28838271]
[3]
Leon, G.; MacDonagh, L.; Finn, S.P.; Cuffe, S.; Barr, M.P. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol. ther., 2016, 158, 71-90.
[http://dx.doi.org/10.1016/j.pharmthera.2015.12.001] [PMID: 26706243]
[4]
Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[5]
Adorno-Cruz, V.; Kibria, G.; Liu, X.; Doherty, M.; Junk, D.J.; Guan, D.; Hubert, C.; Venere, M.; Mulkearns-Hubert, E.; Sinyuk, M.; Alvarado, A.; Caplan, A.I.; Rich, J.; Gerson, S.L.; Lathia, J.; Liu, H. Cancer stem cells: Targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res., 2015, 75(6), 924-929.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3225] [PMID: 25604264]
[6]
Chen, J.; Shao, R.; Li, F.; Monteiro, M.; Liu, J.P.; Xu, Z.P.; Gu, W. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin. Exp. Pharmacol. Physiol., 2015, 42(12), 1317-1326.
[http://dx.doi.org/10.1111/1440-1681.12493] [PMID: 26399781]
[7]
Singh, S.; Chellappan, S. Lung cancer stem cells: Molecular features and therapeutic targets. Mol. Aspects Med., 2014, 39, 50-60.
[http://dx.doi.org/10.1016/j.mam.2013.08.003] [PMID: 24016594]
[8]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[9]
Sun, L.; Suo, C.; Li, S.T.; Zhang, H.; Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the warburg effect. Biochim. Biophys. Acta rev. Cancer, 2018, 1870(1), 51-66.
[http://dx.doi.org/10.1016/j.bbcan.2018.06.005] [PMID: 29959989]
[10]
Zhang, S.; Leng, T.; Zhang, Q.; Zhao, Q.; Nie, X.; Yang, L. sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed. Pharmacother., 2018, 102, 302-308.
[http://dx.doi.org/10.1016/j.biopha.2018.03.071] [PMID: 29571014]
[11]
Sharma, V.; Sharma, A.K.; Punj, V.; Priya, P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin. Cancer Biol., 2019, 59, 133-146.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.005] [PMID: 31408722]
[12]
Lu, P.W.; Li, L.; Wang, F.; Gu, Y.T. Inhibitory role of large intergenic noncoding RNA-ROR on tamoxifen resistance in the endocrine therapy of breast cancer by regulating the PI3K/Akt/mTOR signaling pathway. J. Cell. Physiol., 2019, 234(2), 1904-1912.
[http://dx.doi.org/10.1002/jcp.27066] [PMID: 30145819]
[13]
Li, H.; Hu, J.; Wu, S.; Wang, L.; Cao, X.; Zhang, X.; Dai, B.; Cao, M.; Shao, R.; Zhang, R.; Majidi, M.; Ji, L.; Heymach, J.V.; Wang, M.; Pan, S.; Minna, J.; Mehran, R.J.; Swisher, S.G.; Roth, J.A.; Fang, B. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget, 2016, 7(3), 3548-3558.
[http://dx.doi.org/10.18632/oncotarget.6516] [PMID: 26657290]
[14]
Xiao, Y.; Peng, H.; Hong, C.; Chen, Z.; Deng, X.; Wang, A.; Yang, F.; Yang, L.; Chen, C.; Qin, X. PDGF promotes the warburg effect in pulmonary arterial smooth muscle cells via activation of the PI3K/AKT/mTOR/HIF-1α signaling pathway. Cell. Physiol. Biochem., 2017, 42(4), 1603-1613.
[http://dx.doi.org/10.1159/000479401] [PMID: 28738389]
[15]
Swami, S.; Krishnan, A.V.; Wang, J.Y.; Jensen, K.; Horst, R.; Albertelli, M.A.; Feldman, D. Dietary vitamin D3 and 1,25-dihydroxyvitamin D3 (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer. Endocrinology, 2012, 153(6), 2576-2587.
[http://dx.doi.org/10.1210/en.2011-1600] [PMID: 22454149]
[16]
Marshall, D.T.; Savage, S.J.; Garrett-Mayer, E.; Keane, T.E.; Hollis, B.W.; Horst, R.L.; Ambrose, L.H.; Kindy, M.S.; Gattoni-Celli, S. Vitamin D3 supplementation at 4000 international units per day for one year results in a decrease of positive cores at repeat biopsy in subjects with low-risk prostate cancer under active surveillance. J. Clin. Endocrinol. Metab., 2012, 97(7), 2315-2324.
[http://dx.doi.org/10.1210/jc.2012-1451] [PMID: 22508710]
[17]
Muindi, J.R.; Adjei, A.A.; Wu, Z.R.; Olson, I.; Huang, H.; Groman, A.; Tian, L.; Singh, P.K.; Sucheston, L.E.; Johnson, C.S.; Trump, D.L.; Fakih, M.G. Serum vitamin D metabolites in colorectal cancer patients receiving cholecalciferol supplementation: Correlation with polymorphisms in the vitamin D genes. Horm. cancer, 2013, 4(4), 242-250.
[http://dx.doi.org/10.1007/s12672-013-0139-9] [PMID: 23456391]
[18]
Shan, N.L.; Wahler, J.; Lee, H.J.; Bak, M.J.; Gupta, S.D.; Maehr, H.; Suh, N. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J. Steroid Biochem. Mol. Biol., 2017, 173, 122-129.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.001] [PMID: 27923595]
[19]
Sharma, K.; Goehe, R.W.; Di, X.; Hicks, M.A., II; Torti, S.V.; Torti, F.M.; Harada, H.; Gewirtz, D.A. A novel cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D and the vitamin D analog, EB 1089. Autophagy, 2014, 10(12), 2346-2361.
[http://dx.doi.org/10.4161/15548627.2014.993283] [PMID: 25629933]
[20]
Yang, J.; Chen, Q.; Tian, S.; Song, S.; Liu, F.; Wang, Q.; Fu, Z. The role of 1,25-dyhydroxyvitamin D3 in mouse liver ischemia reperfusion injury: Regulation of autophagy through activation of MEK/ERK signaling and PTEN/PI3K/Akt/mTORC1 signaling. Am. J. Transl. Res., 2015, 7(12), 2630-2645.
[PMID: 26885262]
[21]
Ferreira, G.B.; Vanherwegen, A.S.; Eelen, G.; Gutiérrez, A.C.F.; Van Lommel, L.; Marchal, K.; Verlinden, L.; Verstuyf, A.; Nogueira, T.; Georgiadou, M.; Schuit, F.; Eizirik, D.L.; Gysemans, C.; Carmeliet, P.; Overbergh, L.; Mathieu, C. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep., 2015, 10(5), 711-725.
[http://dx.doi.org/10.1016/j.celrep.2015.01.013] [PMID: 25660022]
[22]
Nedergaard, S.; Andreasen, M. opposing effects of 2-deoxy-d-glucose on interictal- and ictal-like activity when K+ currents and GABAA receptors are blocked in rat hippocampus in vitro. J. Neurophysiol., 2018, 119(5), 1912-1923.
[http://dx.doi.org/10.1152/jn.00732.2017] [PMID: 29412775]
[23]
Zheng, J.; Liu, X.; Wang, P.; Xue, Y.; Ma, J.; Qu, C.; Liu, Y. CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 Axis. Mol. Ther., 2016, 24(7), 1199-1215.
[http://dx.doi.org/10.1038/mt.2016.71] [PMID: 27058823]
[24]
Bi, Y.; Meng, Y.; Wu, H.; Cui, Q.; Luo, Y.; Xue, X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. J. Surg. Oncol., 2016, 113(2), 144-151.
[http://dx.doi.org/10.1002/jso.24124] [PMID: 26799258]
[25]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[26]
Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. j. Radiat. Biol., 2019, 95(7), 912-919.
[http://dx.doi.org/10.1080/09553002.2019.1589653] [PMID: 30822194]
[27]
Yan, L.; Raj, P.; Yao, W.; Ying, H. Glucose metabolism in pancreatic cancer. Cancers (Basel), 2019, 11(10), E1460.
[http://dx.doi.org/10.3390/cancers11101460] [PMID: 31569510]
[28]
Wiese, E.K.; Hitosugi, T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the warburg effect. Front. Cell Dev. Biol., 2018, 6, 79.
[http://dx.doi.org/10.3389/fcell.2018.00079] [PMID: 30087897]
[29]
Bogan, J.S. Regulation of glucose transporter translocation in health and diabetes. Annu. Rev. Biochem., 2012, 81, 507-532.
[http://dx.doi.org/10.1146/annurev-biochem-060109-094246] [PMID: 22482906]
[30]
Zhu, W.; Huang, Y.; Pan, Q.; Xiang, P.; Xie, N.; Yu, H. MicroRNA-98 suppress warburg effect by targeting hk2 in colon cancer cells. Dig. Dis. Sci., 2017, 62(3), 660-668.
[http://dx.doi.org/10.1007/s10620-016-4418-5] [PMID: 28025745]
[31]
Pathria, G.; Scott, D.A.; Feng, Y.; Sang Lee, J.; Fujita, Y.; Zhang, G.; Sahu, A.D.; Ruppin, E.; Herlyn, M.; Osterman, A.L.; Ronai, Z.A. Targeting the warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J., 2018, 37(20), e99735.
[http://dx.doi.org/10.15252/embj.201899735] [PMID: 30209241]
[32]
Yu, W.; Yang, Z.; Huang, R.; Min, Z.; Ye, M. SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive oxygen species. OncoTargets Ther., 2019, 12, 2861-2868.
[http://dx.doi.org/10.2147/OTT.S194256] [PMID: 31114231]
[33]
Semenza, G.L. Tumor metabolism: Cancer cells give and take lactate. J. Clin. Invest., 2008, 118(12), 3835-3837.
[http://dx.doi.org/10.1172/JCI37373] [PMID: 19033652]
[34]
Hong, X.; Zhong, L.; Xie, Y.; Zheng, K.; Pang, J.; Li, Y.; Yang, Y.; Xu, X.; Mi, P.; Cao, H.; Zhang, W.; Hu, T.; Song, G.; Wang, D.; Zhan, Y.Y. Matrine reverses the warburg effect and suppresses colon cancer cell growth via negatively regulating HIF-1α. Front. Pharmacol., 2019, 10, 1437.
[http://dx.doi.org/10.3389/fphar.2019.01437] [PMID: 31849679]
[35]
Hong, S.Y.; Yu, F.X.; Luo, Y.; Hagen, T. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell. Signal., 2016, 28(5), 377-383.
[http://dx.doi.org/10.1016/j.cellsig.2016.01.011] [PMID: 26826652]
[36]
Maiuthed, A.; Chantarawong, W.; Chanvorachote, P. Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res., 2018, 38(7), 3797-3809.
[http://dx.doi.org/10.21873/anticanres.12663] [PMID: 29970499]
[37]
Chiou, S.H.; Wang, M.L.; Chou, Y.T.; Chen, C.J.; Hong, C.F.; Hsieh, W.J.; Chang, H.T.; Chen, Y.S.; Lin, T.W.; Hsu, H.S.; Wu, C.W. Coexpression of Oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res., 2010, 70(24), 10433-10444.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2638] [PMID: 21159654]
[38]
Toren, P.; Zoubeidi, A. Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (review). Int. J. Oncol., 2014, 45(5), 1793-1801.
[http://dx.doi.org/10.3892/ijo.2014.2601] [PMID: 25120209]
[39]
Nanta, R.; Shrivastava, A.; Sharma, J.; Shankar, S.; Srivastava, R.K. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol. Cell. Biochem., 2019, 454(1-2), 11-23.
[http://dx.doi.org/10.1007/s11010-018-3448-z] [PMID: 30251117]
[40]
Sharma, N.; Nanta, R.; Sharma, J.; Gunewardena, S.; Singh, K.P.; Shankar, S.; Srivastava, R.K. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget, 2015, 6(31), 32039-32060.
[http://dx.doi.org/10.18632/oncotarget.5055] [PMID: 26451606]