Design of Dual COX-2 and 5-LOX Inhibitors with Iron-Chelating Properties Using Structure-Based and Ligand-Based Methods

Page: [279 - 292] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Inflammation is a critical component of many disease progressions, such as malignancy, cardiovascular and rheumatic diseases. The inhibition of inflammatory mediators synthesis by modulation of cyclooxygenase (COX) and lipoxygenase (LOX) pathways provides challenging strategy for development of more effective drugs.

Objective: The aim of this study was to design dual COX-2 and 5-LOX inhibitors with iron-chelating properties using a combination of ligand-based (three-dimensional quantitative structure-activity relationship (3D-QSAR)) and structure-based (molecular docking) methods..

Methods: The 3D-QSAR analysis was applied on a literature dataset consisting of 28 dual COX-2 and 5- LOX inhibitors in Pentacle software. The quality of developed COX-2 and 5-LOX 3D-QSAR models were evaluated by internal and external validation methods. The molecular docking analysis was performed in GOLD software, while selected ADMET properties were predicted in ADMET predictor software.

Results: According to the molecular docking studies, the class of sulfohydroxamic acid analogues, previously designed by 3D-QSAR, were clustered as potential dual COX-2 and 5-LOX inhibitors with ironchelating properties. Based on the 3D-QSAR and molecular docking, 1j, 1g and 1l were selected as the most promising dual COX-2 and 5-LOX inhibitors. According to the in silico ADMET predictions, all compounds had ADMET_Risk score less than 7 and CYP_Risk score lower than 2.5. Designed compounds were not estimated as hERG inhibitors and 1j had improved intrinsic solubility (8.704) in comparison to the dataset compounds (0.411-7.946).

Conclusion: By combining 3D-QSAR and molecular docking, three compounds (1j, 1g and 1l) were selected as the most promising designed dual COX-2 and 5-LOX inhibitors, for which good activity, as well as favourable ADMET properties and toxicity, are expected.

Keywords: Drug design, 3D-QSAR, molecular docking, iron chelation, dual COX-2 and 5-LOX inhibitors, ADMET prediction

Graphical Abstract

[1]
Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic inflammation.StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[2]
Sala, A.; Proschak, E.; Steinhilber, D.; Rovati, G.E. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem. Pharmacol., 2018, 158, 161-173.
[http://dx.doi.org/10.1016/j.bcp.2018.10.007] [PMID: 30315753]
[3]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. A&D, 2018, 9(1), 143.
[4]
Aparoy, P.; Reddy, K.K.; Reddanna, P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem., 2012, 19(22), 3763-3778.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[5]
Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int. J. Mol. Sci., 2019, 20(14), 3580.
[http://dx.doi.org/10.3390/ijms20143580] [PMID: 31336653]
[6]
Sinha, S.; Doble, M.; Manju, S.L. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg. Med. Chem., 2019, 27(17), 3745-3759.
[http://dx.doi.org/10.1016/j.bmc.2019.06.040] [PMID: 31331653]
[7]
Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol., 2019, 234(5), 5683-5699.
[http://dx.doi.org/10.1002/jcp.27411] [PMID: 30341914]
[8]
Nakanishi, Y.; Nakatsuji, M.; Seno, H.; Ishizu, S.; Akitake-Kawano, R.; Kanda, K.; Ueo, T.; Komekado, H.; Kawada, M.; Minami, M.; Chiba, T. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis, 2011, 32(9), 1333-1339.
[http://dx.doi.org/10.1093/carcin/bgr128] [PMID: 21730361]
[9]
Kabir, T.D.; Leigh, R.J.; Tasena, H.; Mellone, M.; Coletta, R.D.; Parkinson, E.K.; Prime, S.S.; Thomas, G.J.; Paterson, I.C.; Zhou, D.; McCall, J.; Speight, P.M.; Lambert, D.W.A. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts. Aging (Albany NY), 2016, 8(8), 1608-1635.
[http://dx.doi.org/10.18632/aging.100987] [PMID: 27385366]
[10]
Miao, J.; Lu, X.; Hu, Y.; Piao, C.; Wu, X.; Liu, X.; Huang, C.; Wang, Y.; Li, D.; Liu, J. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget, 2017, 8(52), 89802-89810.
[http://dx.doi.org/10.18632/oncotarget.21155] [PMID: 29163789]
[11]
Hwang, S.H.; Wecksler, A.T.; Wagner, K.; Hammock, B.D. Rationally designed multitarget agents against inflammation and pain. Curr. Med. Chem., 2013, 20(13), 1783-1799.
[http://dx.doi.org/10.2174/0929867311320130013] [PMID: 23410172]
[12]
P, J.J.; Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci., 2018, 121, 356-381.
[http://dx.doi.org/10.1016/j.ejps.2018.06.003] [PMID: 29883727]
[13]
Huang, Y.; Zhang, B.; Li, J.; Liu, H.; Zhang, Y.; Yang, Z.; Liu, W. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur. J. Med. Chem., 2019, 180, 41-50.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.004] [PMID: 31299586]
[14]
Kaur, J.; Bhardwaj, A.; Huang, Z.; Knaus, E.E. Aspirin analogues as dual cyclooxygenase-2/5-lipoxygenase inhibitors: Synthesis, nitric oxide release, molecular modeling, and biological evaluation as anti-inflammatory agents. ChemMedChem, 2012, 7(1), 144-150.
[http://dx.doi.org/10.1002/cmdc.201100460] [PMID: 22095955]
[15]
Chowdhury, M.A.; Abdellatif, K.R.A.; Dong, Y.; Rahman, M.; Das, D.; Suresh, M.R.; Knaus, E.E. Synthesis of 1-(methanesulfonyl- and aminosulfonylphenyl)acetylenes that possess a 2-(N-difluoromethyl-1,2-dihydropyridin-2-one) pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2009, 19(3), 584-588.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.066] [PMID: 19136259]
[16]
Chowdhury, M.A.; Abdellatif, K.R.A.; Dong, Y.; Das, D.; Yu, G.; Velázquez, C.A.; Suresh, M.R.; Knaus, E.E. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: Dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2009, 19(24), 6855-6861.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.083] [PMID: 19884005]
[17]
Chowdhury, M.A.; Abdellatif, K.R.A.; Dong, Y.; Das, D.; Suresh, M.R.; Knaus, E.E. Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. J. Med. Chem., 2009, 52(6), 1525-1529.
[http://dx.doi.org/10.1021/jm8015188] [PMID: 19296694]
[18]
Özadalı, K.; Özkanlı, F.; Jain, S.; Rao, P.P.N.; Velázquez-Martínez, C.A. Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents. Bioorg. Med. Chem., 2012, 20(9), 2912-2922.
[http://dx.doi.org/10.1016/j.bmc.2012.03.021] [PMID: 22475926]
[19]
Roy, K.; Kar, S.; Das, R.N. A primer on QSAR/QSPR modeling: Fundamental concepts; Springer International Publishing: Cham, 2015.
[http://dx.doi.org/10.1007/978-3-319-17281-1]
[20]
Stewart, J.J.P. Optimization of parameters for semiempirical methods i. method. J. Comput. Chem., 1989, 10(2), 209-220.
[http://dx.doi.org/10.1002/jcc.540100208]
[21]
Stewart, J.J.P. Optimization of parameters for semiempirical methods ii. applications. J. Comput. Chem., 1989, 10(2), 221-264.
[http://dx.doi.org/10.1002/jcc.540100209]
[22]
Roothaan, C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 1951, 23(2), 69-89.
[http://dx.doi.org/10.1103/RevModPhys.23.69]
[23]
Chem 3DUltra7.0 2001. Available from: http://www.cambridgesoft.com/
[24]
Puzyn, T.; Mostrag-Szlichtyng, A.; Gajewicz, A.; Skrzyński, M.; Worth, A.P. Investigating the influence of data splitting on the predictive ability of qsar/qspr models. Struct. Chem., 2011, 22(4), 795-804.
[http://dx.doi.org/10.1007/s11224-011-9757-4]
[25]
Tropsha, A.; Gramatica, P.; Gombar, V. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of qspr models. QSAR Comb. Sci., 2003, 22(1), 69-77.
[http://dx.doi.org/10.1002/qsar.200390007]
[26]
Gramatica, P. Principles of qsar models validation: Internal and external. QSAR Comb. Sci., 2007, 26(5), 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[27]
Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem., 2000, 43(17), 3233-3243.
[http://dx.doi.org/10.1021/jm000941m] [PMID: 10966742]
[28]
Pentacle 1.0.7, 2009. Available from: https://www.moldiscovery.com
[29]
Fontaine, F.; Pastor, M.; Sanz, F. Incorporating molecular shape into the alignment-free Grid-Independent Descriptors. J. Med. Chem., 2004, 47(11), 2805-2815.
[http://dx.doi.org/10.1021/jm0311240] [PMID: 15139758]
[30]
Durán, A.; Martínez, G.C.; Pastor, M. Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields. J. Chem. Inf. Model., 2008, 48(9), 1813-1823.
[http://dx.doi.org/10.1021/ci800037t] [PMID: 18693718]
[31]
Durán, A.; Zamora, I.; Pastor, M. Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening. J. Chem. Inf. Model., 2009, 49(9), 2129-2138.
[http://dx.doi.org/10.1021/ci900228x] [PMID: 19728739]
[32]
Ojha, P.K.; Roy, K. Comparative qsars for antimalarial endochins: Importance of descriptor-thinning and noise reduction prior to feature selection. Chemometr. Intell. Lab., 2011, 109(2), 146-161.
[http://dx.doi.org/10.1016/j.chemolab.2011.08.007]
[33]
Tropsha, A. Best practices for qsar model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[34]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Christapher, P.V.; Agrawal, R. Validation of qsar models - strategies and importance. Int. J. Drug Design and Discov., 2011, 2, 511-519.
[35]
Roy, K.; Kar, S.; Das, R.N. Statistical methods in QSAR/QSPR.A primer on qsar/qspr modeling; Springer International Publishing: Cham, 2015, pp. 37-59.
[36]
Roy, K.; Chakraborty, P.; Mitra, I.; Ojha, P.K.; Kar, S.; Das, R.N. Some case studies on application of “r(m)2” metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data. J. Comput. Chem., 2013, 34(12), 1071-1082.
[http://dx.doi.org/10.1002/jcc.23231] [PMID: 23299630]
[37]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of qsar models. Chemometr. Intell. Lab., 2015, 145, 22-29.
[http://dx.doi.org/10.1016/j.chemolab.2015.04.013]
[38]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking 1 1. J. Mol. Biol; Cohen, F. E., Ed. , 1997; 267, pp. (3)727-748.
[39]
Mooij, W.T.M.; Verdonk, M.L. General and targeted statistical potentials for protein-ligand interactions. Proteins, 2005, 61(2), 272-287.
[http://dx.doi.org/10.1002/prot.20588] [PMID: 16106379]
[40]
Sahi, S.; Srinivasan, M.; Kothekar, V. 530 ps molecular dynamics simulation of indoprofen and ns398 with cox-1 and cox-2. Study of perturbative changes in the complexes. J. Mol. Struct. Theochem, 2000, 498(1–3), 133-148.
[http://dx.doi.org/10.1016/S0166-1280(99)00257-2]
[41]
Vitale, P.; Tacconelli, S.; Perrone, M.G.; Malerba, P.; Simone, L.; Scilimati, A.; Lavecchia, A.; Dovizio, M.; Marcantoni, E.; Bruno, A.; Patrignani, P. Synthesis, pharmacological characterization, and docking analysis of a novel family of diarylisoxazoles as highly selective cyclooxygenase-1 (COX-1) inhibitors. J. Med. Chem., 2013, 56(11), 4277-4299.
[http://dx.doi.org/10.1021/jm301905a] [PMID: 23651359]
[42]
Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem., 2003, 38(7-8), 645-659.
[http://dx.doi.org/10.1016/S0223-5234(03)00115-6] [PMID: 12932896]
[43]
ADMET Predictor v. 9.5.0.16 2013. Available from: http://www.simulations-plus.com/
[44]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[45]
Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The structure of human 5-lipoxygenase. Science, 2011, 331(6014), 217-219.
[http://dx.doi.org/10.1126/science.1197203] [PMID: 21233389]
[46]
Tsolaki, E.; Eleftheriou, P.; Kartsev, V.; Geronikaki, A.; Saxena, A.K. Application of docking analysis in the prediction and biological evaluation of the lipoxygenase inhibitory action of thiazolyl derivatives of mycophenolic acid. Molecules, 2018, 23(7), 1621.
[http://dx.doi.org/10.3390/molecules23071621] [PMID: 29970872]
[47]
Ganorkar, S.B.; Vander Heyden, Y.; Shirkhedkar, A.A.; Lokwani, D.K.; Dhumal, D.M.; Bobade, P.S. Pharmaceutical analysis combined with in-silico therapeutic and toxicological profiling on zileuton and its impurities to assist in modern drug discovery. J. Pharm. Biomed. Anal., 2020, 179, 112982.
[http://dx.doi.org/10.1016/j.jpba.2019.112982] [PMID: 31785932]