Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazoleincorporated Naphthalimide Derivatives as Salmonella typhimurium DNA Intercalators, and Combination Researches

Page: [544 - 557] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Objective: A series of novel benzimidazole-incorporated naphthalimide derivatives were designed and prepared in an effort to overcome the increasing antibiotic resistance.

Methods: The target novel benzimidazole-incorporated naphthalimide derivatives were synthesized from commercial 4-bromo-1,8-naphthalic anhydride and o-phenylene diamine by aminolysis, Nalkylation and so on. The antimicrobial activity of the synthesized compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of compound 10g with Salmonella typhimurium DNA was studied using UV-vis spectroscopic methods.

Results: Compound 10g bearing a 2,4-dichlorobenzyl moiety exhibited the best antimicrobial activities in this series relatively; especially, it exhibited comparable activity against Salmonella typhimurium in comparison with the reference drug Norfloxacin (MIC = 4 μg/mL). Further research showed that compound 10g could effectively intercalate into the Salmonella typhimurium DNA to form the 10g–DNA complex, which might correlate with the inhibitory activity. Molecular docking results demonstrated that naphthalimide compound 10g could interact with base-pairs of DNA hexamer duplex by π–π stacking. Additionally, the combination of the strong active compound with clinical drugs exhibited better antimicrobial efficiency with less dosage and broader antimicrobial spectrum than the separate use of them alone. Notably, these combined systems were more sensitive to Fluconazole-insensitive M. ruber.

Conclusion: This work provides a promising starting point to optimize the structures of benzimidazole- incorporated naphthalimide derivatives as potent antimicrobial agents.

Keywords: Naphthalimide, benzimidazole, antibacterial, antifungal, Salmonella typhimurium, DNA.

Graphical Abstract

[1]
Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[2]
Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem., 2020, 199, 112326.
[http://dx.doi.org/10.1016/j.ejmech.2020.112326] [PMID: 32460040]
[3]
Ameryckx, A.; Pochet, L.; Wang, G.; Yildiz, E.; Saadi, B.E.; Wouters, J.; Van Bambeke, F.; Frédérick, R. Pharmacomodulations of the benzoyl-thiosemicarbazide scaffold reveal antimicrobial agents targeting d-alanyl-d-alanine ligase in bacterio. Eur. J. Med. Chem., 2020, 200, 112444.
[http://dx.doi.org/10.1016/j.ejmech.2020.112444] [PMID: 32497961]
[4]
Das, P.; Delost, M.D.; Qureshi, M.H.; Smith, D.T.; Njardarson, J.T. A survey of the structures of US FDA approved combination drugs. J. Med. Chem., 2019, 62(9), 4265-4311.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01610] [PMID: 30444362]
[5]
Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Li, D.; El-Baz, K.; Shalaby, M.W.; Al-Karaki, R.; Nasr, M.; Klein, C.D.; Abouzid, K.A.M.; Seleem, M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem., 2020, 186, 111850.
[http://dx.doi.org/10.1016/j.ejmech.2019.111850] [PMID: 31735572]
[6]
Gong, H.H.; Addla, D.; Lv, J.S.; Zhou, C.H. Heterocyclic naphthalimides as new skeleton structure of compounds with increasingly ex-panding relational medicinal applications. Curr. Top. Med. Chem., 2016, 16(28), 3303-3364.
[http://dx.doi.org/10.2174/1568026616666160506145943] [PMID: 27150364]
[7]
Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159, 393-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.055] [PMID: 30312931]
[8]
Lv, J.S.; Peng, X.M.; Kishore, B.; Zhou, C.H. 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: Synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 2014, 24(1), 308-313.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.013] [PMID: 24295786]
[9]
Chen, Y.Y.; Gopala, L.; Bheemanaboina, R.R.Y.; Liu, H.B.; Cheng, Y.; Geng, R.X.; Zhou, C.H. Novel naphthalimide aminothiazoles as potential multitargeting antimicrobial agents. ACS Med. Chem. Lett., 2017, 8(12), 1331-1335.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00452] [PMID: 29259757]
[10]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[11]
Damu, G.L.V.; Wang, Q.P.; Zhang, H.Z.; Zhang, Y.Y.; Lv, J.S.; Zhou, C.H. A series of naphthalimide azoles: Design, synthesis and bioac-tive evaluation as potential antimicrobial agents. Sci. China Chem., 2013, 56(7), 952-969.
[http://dx.doi.org/10.1007/s11426-013-4873-1]
[12]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[13]
Zhang, Y.Y.; Mi, J.L.; Zhou, C.H.; Zhou, X.D. Synthesis of novel fluconazoliums and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2011, 46(9), 4391-4402.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.010] [PMID: 21794961]
[14]
Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M.Z.; Dubey, K.D.; Suresh Kumar, G.; Tandon, V. Naphthalenediimide-linked bisbenzimidazole derivatives as telomeric G-quadruplex-stabilizing ligands with improved anticancer activity. ACS Omega, 2017, 2(3), 966-980.
[http://dx.doi.org/10.1021/acsomega.6b00523] [PMID: 30023623]
[15]
Zhang, H.Z.; Damu, G.L.V.; Cai, G.X.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Flucon-azole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216]
[16]
Zhang, H.Z.; Lin, J.M.; Rasheed, S.; Zhou, C.H. Design, synthesis, and biological evaluation of novel benzimidazole derivatives and their interaction with calf thymus DNA and synergistic effects with clinical drugs. Sci. China Chem., 2014, 57(6), 807-822.
[http://dx.doi.org/10.1007/s11426-014-5087-x]
[17]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicro-bial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.077] [PMID: 28494254]
[18]
Zhang, S.L.; Damu, G.L.V.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[19]
Luo, Y.L.; Baathulaa, K.; Kannekanti, V.K.; Zhou, C.H.; Cai, G.X. Novel benzimidazole derived naphthalimide triazoles: Synthesis, anti-microbial activity and interactions with calf thymus DNA. Sci. China Chem., 2015, 58(3), 483-494.
[http://dx.doi.org/10.1007/s11426-014-5296-3]
[20]
Zhang, Y.Y.; Zhou, C.H. Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(14), 4349-4352.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.042] [PMID: 21669530]
[21]
Popov, A.B.; Krstulović, L.; Koštrun, S.; Jelić, D.; Bokulić, A.; Stojković, M.R.; Zonjić, I.; Taylor, M.C.; Kelly, J.M.; Bajić, M.; Raić-Malić, S. Design, synthesis, antitrypanosomal activity, DNA/RNA binding and in vitro ADME profiling of novel imidazoline-substituted 2-arylbenzimidazoles. Eur. J. Med. Chem., 2020, 207, 112802.
[http://dx.doi.org/10.1016/j.ejmech.2020.112802] [PMID: 32927230]
[22]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[23]
Yin, B.T.; Yan, C.Y.; Peng, X.M.; Zhang, S.L.; Rasheed, S.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of α-triazolyl chal-cones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem., 2014, 71, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.003] [PMID: 24291568]
[24]
Liu, Q.L.; Fang, P.J.; Zhao, Z.L.; Zhang, H.Z.; Zhou, C.H. Design, synthesis, and biological evaluation of novel sulfonamide 1,2,4-triazoles and their Interaction with calf thymus DNA. Youji Huaxue, 2017, 37(12), 3146-3154.
[http://dx.doi.org/10.6023/cjoc201708010]
[25]
He, S.C.; Zhang, H.Z.; Zhang, H.J.; Sun, Q.; Zhou, C.H. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity ex-ploration. Med. Chem., 2020, 16(1), 104-118.
[http://dx.doi.org/10.2174/1573406414666181106124852] [PMID: 30398118]
[26]
Zhang, L.; Addla, D.; Ponmani, J.; Wang, A.; Xie, D.; Wang, Y.N.; Zhang, S.L.; Geng, R.X.; Cai, G.X.; Li, S.; Zhou, C.H. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents. Eur. J. Med. Chem., 2016, 111, 160-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.052] [PMID: 26871658]
[27]
Özbek, N. Katircioğlu, H.; Karacan, N.; Baykal, T. Synthesis, characterization and antimicrobial activity of new aliphatic sulfonamide. Bioorg. Med. Chem., 2007, 15(15), 5105-5109.
[http://dx.doi.org/10.1016/j.bmc.2007.05.037] [PMID: 17544281]
[28]
Liu, H.B.; Gao, W.W.; Tangadanchu, V.K.R.; Zhou, C.H.; Geng, R.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 143, 66-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.027] [PMID: 29172083]
[29]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Chen, J.P.; Xie, Y.P.; Cai, G.X.; Zhang, S.L.; Zhou, C.H. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on mi-crobes, DNA, HSA and topoisomerase IV. Eur. J. Med. Chem., 2019, 179, 166-181.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.046] [PMID: 31254919]
[30]
Zhang, Y.; Tangadanchu, V.K.R.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential antimicrobial isopropanol-conjugated carbazole azoles as dual targeting inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett., 2018, 9(3), 244-249.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00514] [PMID: 29541368]
[31]
Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851]
[32]
Li, X.L.; Hu, Y.J.; Wang, H.; Yu, B.Q.; Yue, H.L. Molecular spectroscopy evidence of berberine binding to DNA: Comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 2012, 13(3), 873-880.
[http://dx.doi.org/10.1021/bm2017959] [PMID: 22316074]
[33]
Zhang, G.; Fu, P.; Wang, L.; Hu, M. Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J. Agric. Food Chem., 2011, 59(16), 8944-8952.
[http://dx.doi.org/10.1021/jf2019006] [PMID: 21761894]
[34]
Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, SARs, and preliminary antibac-terial mechanism. J. Med. Chem., 2016, 59(10), 4488-4510.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01678] [PMID: 27115717]
[35]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Zhang, S.L.; Zhou, C.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur. J. Med. Chem., 2019, 167, 105-123.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.072] [PMID: 30769240]