The Screening of Phytochemicals Against NS5 Polymerase to Treat Zika Virus Infection: Integrated Computational Based Approach

Page: [738 - 751] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The recent Zika Virus (ZIKV) outbreak provides a spur for new, efficient, and safe anti-Zika Virus agents. RNA-dependent RNA polymerase (RdRp) is critical amongst the seven non-structural proteins for viral replication and considered an attractive drug target.

Methods: In this study, molecular docking approach was used to rationally screen the library of 5000 phytochemicals to find inhibitors against NS5 RdRp. LigX tool was used to analyze the 2D plots of receptor-ligand interactions. The top-ranked compounds were then subjected to in-silico pharmacokinetic study.

Results: The compounds namely Polydatin, Dihydrogenistin, Liquiritin, Rhapontin and Cichoriin were successfully bound inside the pocket of NS5 RdRp. Polydatin was the leading phytochemical that showed high docking score -18.71 (kcal/mol) and bonding interaction at the active-site of NS5 RdRp. They were subjected to analyze drug-like properties that further reinforced their validation and showed that they have more capability to attach with the receptor as compared to SOFOSBUVIR control drug. MD simulation of the top two complexes was performed and the simulated complexes showed stability and ligands were kept within the bonding pocket.

Conclusion: The study might facilitate the development of a natural and cost-effective drug against ZIKV. Further validation, however, is necessary to confirm its effectiveness and its biocompatibility.

Keywords: Zika virus, NS5-RdRp, phytochemicals, drugs, biocompatibility, molecular docking

Graphical Abstract

[1]
Karesh, W. Emerg. Infect. Dis., 2011.
[2]
Devaux, C.A. Emerging and re-emerging viruses: A global challenge illustrated by chikungunya virus outbreaks. World J. Virol., 2012, 1(1), 11-22.
[http://dx.doi.org/10.5501/wjv.v1.i1.11] [PMID: 24175207]
[3]
Basundra, S. Zika Virus: An emerging public health challenge. J. Krishna Inst. Med. Sci., 2016, 5(3)
[4]
Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; Guillaumot, L.; Griggs, A.; Bel, M.; Lambert, A.J.; Laven, J.; Kosoy, O.; Panella, A.; Biggerstaff, B.J.; Fischer, M.; Hayes, E.B. Zika virus outbreak on yap island, Federated states of micronesia. N. Engl. J. Med., 2009, 360(24), 2536-2543.
[http://dx.doi.org/10.1056/NEJMoa0805715] [PMID: 19516034]
[5]
Cao-Lormeau, V-M.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.L.; Mallet, H.P.; Sall, A.A.; Musso, D. Zika virus, french polynesia, south pacific, 2013. Emerg. Infect. Dis., 2014, 20(6), 1085-1086.
[http://dx.doi.org/10.3201/eid2006.140138] [PMID: 24856001]
[6]
Musso, D.; Bossin, H.; Mallet, H.P.; Besnard, M.; Broult, J.; Baudouin, L.; Levi, J.E.; Sabino, E.C.; Ghawche, F.; Lanteri, M.C.; Baud, D. Zika virus in french polynesia 2013-14: Anatomy of a completed outbreak. Lancet Infect. Dis., 2018, 18(5), e172-e182.
[http://dx.doi.org/10.1016/S1473-3099(17)30446-2] [PMID: 29150310]
[7]
Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med., 2016, 374(16), 1552-1563.
[http://dx.doi.org/10.1056/NEJMra1602113] [PMID: 27028561]
[8]
Abu-Rish, E.Y.; Elayeh, E.R.; Browning, M.J. Physicians’ knowledge, attitudes and practices towards zika virus infection in jordan. J. Infect. Dev. Ctries., 2019, 13(7), 584-590.
[http://dx.doi.org/10.3855/jidc.11356] [PMID: 32065815]
[9]
Alera, M.T.; Hermann, L.; Tac-An, I.A.; Klungthong, C.; Rutvisuttinunt, W.; Manasatienkij, W.; Villa, D.; Thaisomboonsuk, B.; Velasco, J.M.; Chinnawirotpisan, P.; Lago, C.B.; Roque, V.G., Jr; Macareo, L.R.; Srikiatkhachorn, A.; Fernandez, S.; Yoon, I.K. Zika virus infection, philippines, 2012. Emerg. Infect. Dis., 2015, 21(4), 722-724.
[http://dx.doi.org/10.3201/eid2104.141707] [PMID: 25811410]
[10]
Bhardwaj, S.; Gokhale, M.D.; Mourya, D.T. Zika virus: Current concerns in India. Indian J. Med. Res., 2017, 146(5), 572-575.
[PMID: 29512599]
[11]
Buathong, R.; Hermann, L.; Thaisomboonsuk, B.; Rutvisuttinunt, W.; Klungthong, C.; Chinnawirotpisan, P.; Manasatienkij, W.; Nisalak, A.; Fernandez, S.; Yoon, I.K.; Akrasewi, P.; Plipat, T. Detection of zika virus infection in thailand, 2012–2014. Am. J. Trop. Med. Hyg., 2015, 93(2), 380-383.
[http://dx.doi.org/10.4269/ajtmh.15-0022] [PMID: 26101272]
[12]
Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika virus in Gabon (Central Africa)-2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis., 2014, 8(2), e2681.
[http://dx.doi.org/10.1371/journal.pntd.0002681] [PMID: 24516683]
[13]
Moi, M.L.; Nguyen, T.T.T.; Nguyen, C.T.; Vu, T.B.H.; Tun, M.M.N.; Pham, T.D.; Pham, N.T.; Tran, T.; Morita, K.; Le, T.Q.M.; Dang, D.A.; Hasebe, F. Zika virus infection and microcephaly in Vietnam. Lancet Infect. Dis., 2017, 17(8), 805-806.
[http://dx.doi.org/10.1016/S1473-3099(17)30412-7] [PMID: 28741545]
[14]
Diallo, D.; Sall, A.A.; Diagne, C.T.; Faye, O.; Faye, O.; Ba, Y.; Hanley, K.A.; Buenemann, M.; Weaver, S.C.; Diallo, M. Zika virus emergence in mosquitoes in southeastern Senegal, 2011. PLoS One, 2014, 9(10), e109442.
[http://dx.doi.org/10.1371/journal.pone.0109442] [PMID: 25310102]
[15]
Marchette, N.J.; Garcia, R.; Rudnick, A. Isolation of zika virus from aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg., 1969, 18(3), 411-415.
[http://dx.doi.org/10.4269/ajtmh.1969.18.411] [PMID: 4976739]
[16]
Thangamani, S.; Huang, J.; Hart, C.E.; Guzman, H.; Tesh, R.B. Vertical transmission of zika virus in aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg., 2016, 95(5), 1169-1173.
[http://dx.doi.org/10.4269/ajtmh.16-0448] [PMID: 27573623]
[17]
Owino, E.A. Aedes spp mosquitoes and emerging neglected diseases of Kenya. Int. J. Mosq. Res., 2018, 5(5), 1-11.
[18]
Kumar Pandey, R.; Ojha, R.; Mishra, A.; Kumar Prajapati, V. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J. Cell. Biochem., 2018, 119(9), 7631-7642.
[http://dx.doi.org/10.1002/jcb.27110] [PMID: 29900580]
[19]
Verçosa, I. The visual system in infants with microcephaly related to presumed congenital zika syndrome. J. American Association Pediatric Ophthalmology Strabismus., 2017, 21(4), 300-304.
[http://dx.doi.org/10.1016/j.jaapos.2017.05.024]
[20]
Wimalasiri-Yapa, B.M.C.R.; Yapa, H.E.; Huang, X.; Hafner, L.M.; Kenna, T.J.; Frentiu, F.D. Zika virus and arthritis/arthralgia: A systematic review and meta-analysis. Viruses, 2020, 12(10), 1137.
[http://dx.doi.org/10.3390/v12101137] [PMID: 33036370]
[21]
Prasad, V.M.; Miller, A.S.; Klose, T.; Sirohi, D.; Buda, G.; Jiang, W.; Kuhn, R.J.; Rossmann, M.G. Structure of the immature zika virus at 9 Å resolution. Nat. Struct. Mol. Biol., 2017, 24(2), 184-186.
[http://dx.doi.org/10.1038/nsmb.3352] [PMID: 28067914]
[22]
Akash, U.T. Zika virus disease-review. Res. J. Pharma. Pharmacodyn., 2017, 9(2), 101-114.
[http://dx.doi.org/10.5958/2321-5836.2017.00019.2]
[23]
Ginier, M.; Neumayr, A.; Günther, S.; Schmidt-Chanasit, J.; Blum, J. Zika without symptoms in returning travellers: What are the implications? Travel Med. Infect. Dis., 2016, 14(1), 16-20.
[http://dx.doi.org/10.1016/j.tmaid.2016.01.012] [PMID: 26876061]
[24]
Javed, F.; Manzoor, K.N.; Ali, M.; Haq, I.U.; Khan, A.A.; Zaib, A.; Manzoor, S. Zika virus: what we need to know? J. Basic Microbiol., 2018, 58(1), 3-16.
[http://dx.doi.org/10.1002/jobm.201700398] [PMID: 29131357]
[25]
Wang, B.; Tan, X.F.; Thurmond, S.; Zhang, Z.M.; Lin, A.; Hai, R.; Song, J. The structure of zika virus ns5 reveals a conserved domain conformation. Nat. Commun., 2017, 8(1), 14763.
[http://dx.doi.org/10.1038/ncomms14763] [PMID: 28345600]
[26]
Zhao, B.; Yi, G.; Du, F.; Chuang, Y.C.; Vaughan, R.C.; Sankaran, B.; Kao, C.C.; Li, P. Structure and function of the zika virus full-length NS5 protein. Nat. Commun., 2017, 8(1), 14762.
[http://dx.doi.org/10.1038/ncomms14762] [PMID: 28345656]
[27]
Kuno, G.; Chang, G-J. Full-length sequencing and genomic characterization of bagaza, kedougou, and zika viruses. Arch. Virol., 2007, 152(4), 687-696.
[http://dx.doi.org/10.1007/s00705-006-0903-z] [PMID: 17195954]
[28]
Shi, Y.; Gao, G.F. Structural biology of the zika virus. Trends Biochem. Sci., 2017, 42(6), 443-456.
[http://dx.doi.org/10.1016/j.tibs.2017.02.009] [PMID: 28318966]
[29]
Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.; Weaver, S.C. Genetic characterization of zika virus strains: Geographic expansion of the asian lineage. PLoS Negl. Trop. Dis., 2012, 6(2), e1477.
[http://dx.doi.org/10.1371/journal.pntd.0001477] [PMID: 22389730]
[30]
Ahmad, N. Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors. J. Mol. Struct., 2020, 1203, 127428.
[http://dx.doi.org/10.1016/j.molstruc.2019.127428]
[31]
Lin, Y.; Zhang, H.; Song, W.; Si, S.; Han, Y.; Jiang, J. Identification and characterization of Zika virus NS5 RNA-dependent RNA polymerase inhibitors. Int. J. Antimicrob. Agents, 2019, 54(4), 502-506.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.07.010] [PMID: 31310806]
[32]
Duan, W.; Song, H.; Wang, H.; Chai, Y.; Su, C.; Qi, J.; Shi, Y.; Gao, G.F. The crystal structure of Zika virus NS5 reveals conserved drug targets. EMBO J., 2017, 36(7), 919-933.
[http://dx.doi.org/10.15252/embj.201696241] [PMID: 28254839]
[33]
Godoy, A.S.; Lima, G.M.; Oliveira, K.I.; Torres, N.U.; Maluf, F.V.; Guido, R.V.; Oliva, G. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase. Nat. Commun., 2017, 8(1), 14764.
[http://dx.doi.org/10.1038/ncomms14764] [PMID: 28345596]
[34]
Odera, E.A.; Odera, J.O.; Hossain, M.Z. Advances in zika virus: Searching for the missing link. Pub. Health prev. Med., 2016, 2(5), 32-42.
[35]
Izuagbe, R.E. A prostate cell line model of persistent Zika virus infection; Queensland University of Technology, 2019.
[http://dx.doi.org/10.5204/thesis.eprints.129570]
[36]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972.
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[37]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[38]
Song, C.M.; Lim, S.J.; Tong, J.C. Recent advances in computer-aided drug design. Brief. Bioinform., 2009, 10(5), 579-591.
[http://dx.doi.org/10.1093/bib/bbp023] [PMID: 19433475]
[39]
Rao, V.S.; Srinivas, K. Modern drug discovery process: An in silico approach. J. Bioinfor. Seq. Analy., 2011, 3(5), 89-94.
[40]
Ramharack, P.; Soliman, M.E. Zika virus drug targets: A missing link in drug design and discovery–a route map to fill the gap. RSC Advances, 2016, 6(73), 68719-68731.
[http://dx.doi.org/10.1039/C6RA12142J]
[41]
Luo, H.; Mattes, W.; Mendrick, D.L.; Hong, H. Molecular docking for identification of potential targets for drug repurposing. Curr. Top. Med. Chem., 2016, 16(30), 3636-3645.
[http://dx.doi.org/10.2174/1568026616666160530181149] [PMID: 27334201]
[42]
Saxena, M. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem., 2013, 1(6)
[43]
Lako, J. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of fijian fruit, vegetables and other readily available foods. Food Chem., 2007, 101(4), 1727-1741.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.031]
[44]
Teoh, E.S. Secondary metabolites of plants.Medicinal orchids of Asia; Springer, 2016, pp. 59-73.
[http://dx.doi.org/10.1007/978-3-319-24274-3_5]
[45]
Georgiev, M.I. Natural products utilization; Springer, 2014.
[http://dx.doi.org/10.1007/s11101-014-9363-3]
[46]
Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv., 2014, 32(6), 1145-1156.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.006] [PMID: 24780153]
[47]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[48]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[49]
Nyamai, D.W. Medicinally important phytochemicals:An untapped research avenue. J. Pharmacogn. Phytochem., 2016, 4(1), 35-49.
[50]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. biochimica et biophysica Acta (BBA)-. Gen. Subjects, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[51]
Rollinger, J.M.; Stuppner, H.; Langer, T. Virtual screening for the discovery of bioactive natural products.Natural compounds as drugs; Springer, 2008, pp. 211-249.
[http://dx.doi.org/10.1007/978-3-7643-8117-2_6]
[52]
Delvecchio, R.; Higa, L.M.; Pezzuto, P.; Valadão, A.L.; Garcez, P.P.; Monteiro, F.L.; Loiola, E.C.; Dias, A.A.; Silva, F.J.; Aliota, M.T.; Caine, E.A.; Osorio, J.E.; Bellio, M.; O’Connor, D.H.; Rehen, S.; de Aguiar, R.S.; Savarino, A.; Campanati, L.; Tanuri, A. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses, 2016, 8(12), 322.
[http://dx.doi.org/10.3390/v8120322] [PMID: 27916837]
[53]
Gentles, R.G.; Sheriff, S.; Beno, B.R.; Wan, C.; Kish, K.; Ding, M.; Zheng, X.; Chupak, L.; Poss, M.A.; Witmer, M.R.; Morin, P.; Wang, Y.K.; Rigat, K.; Lemm, J.; Voss, S.; Liu, M.; Pelosi, L.; Roberts, S.B.; Gao, M.; Kadow, J.F. Investigation of the mode of binding of a novel series of N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamides to the hepatitis C virus polymerase. Bioorg. Med. Chem. Lett., 2011, 21(8), 2212-2215.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.011] [PMID: 21441029]
[54]
Labute, P. Protonate 3D: Assignment of macromolecular protonation state and geometry; Chemical Computing Group Inc, 2007, pp. 1-17.
[55]
Inc., C.C.G.. Molecular operating environment (MOE); Chemical computing group inc 1010 Sherbooke St. West, Suite# 910.: Montreal, QC, Canada., 2016.
[56]
Xie, X.Q.; Chen, J.Z. Data mining a small molecule drug screening representative subset from NIH PubChem. J. Chem. Inf. Model., 2008, 48(3), 465-475.
[http://dx.doi.org/10.1021/ci700193u] [PMID: 18302356]
[57]
Ashfaq, U.A.; Mumtaz, A.; Qamar, T.U.; Fatima, T. MAPS Database: Medicinal plant activities, phytochemical and structural database. Bioinformation, 2013, 9(19), 993-995.
[http://dx.doi.org/10.6026/97320630009993] [PMID: 24391364]
[58]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[59]
Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: A useful medicinal plants database for drug designing. Nat. Prod. Res., 2017, 31(11), 1228-1236.
[http://dx.doi.org/10.1080/14786419.2016.1233409] [PMID: 27681445]
[60]
Tools, A. 1.5. 6 (ADT)/MGL Tools 1.5. 6; The Scripps Research Institute: CA, USA, 2012.
[61]
Jarrahpour, A. Petra, osiris and molinspiration (POM) together as a successful support in drug design: Antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res., 2012, 21(8), 1984-1990.
[http://dx.doi.org/10.1007/s00044-011-9723-0]
[62]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[63]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[64]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[65]
Sawye, T.; Sherman, W.; Krilov, G. John Wiley & Sons. Structural Stability of Nucleic Acids and Peptides: A Theoretical and Computational Study, 2010, 2012, 75.
[66]
Jorgensen, W.L.; Madura, J.D.; Swenson, C.J. Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc., 1984, 106(22), 6638-6646.
[http://dx.doi.org/10.1021/ja00334a030]
[67]
Debiec, K.T.; Whitley, M.J.; Koharudin, L.M.I.; Chong, L.T.; Gronenborn, A.M. Integrating NMR, SAXS, and atomistic simulations: Structure and dynamics of a two-domain protein. Biophys. J., 2018, 114(4), 839-855.
[http://dx.doi.org/10.1016/j.bpj.2018.01.001] [PMID: 29490245]
[68]
ul Qamar, M.T. Al., Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Sci. Rep., 2019, 9(1), 1-16.
[69]
Hussain, G.; Ashfaq, U.A.; Rahman, M.; Masoud, M.S.; Nahid, N.; Bhinder, M.A.; Aslam, N.; Yousaf, N.; Ahmed, U.; Qasim, M. Computational screening of phytochemicals against survivin protein: A potent target for cancer. Pak. J. Pharm. Sci., 2019, 32(3)(Supplementary), 1145-1154.
[PMID: 31303583]
[70]
Terstappen, G.C.; Reggiani, A. In silico research in drug discovery. Trends Pharmacol. Sci., 2001, 22(1), 23-26.
[http://dx.doi.org/10.1016/S0165-6147(00)01584-4] [PMID: 11165668]
[71]
Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol., 1996, 6(3), 402-406.
[http://dx.doi.org/10.1016/S0959-440X(96)80061-3] [PMID: 8804827]
[72]
ul Qamar, M.T. Al. Discovery of novel dengue ns2b/ns3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database. Int. J. Pharmacol., 2016, 12(6), 621-632.
[73]
Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. J. Ethnopharmacol., 2013, 148(3), 729-745.
[http://dx.doi.org/10.1016/j.jep.2013.05.007] [PMID: 23707210]
[74]
Zhao, C-N.; Yao, Z.L.; Yang, D.; Ke, J.; Wu, Q.L.; Li, J.K.; Zhou, X.D. Chemical Constituents from Fraxinus hupehensis and their antifungal and herbicidal activities. Biomolecules, 2020, 10(1), 74.
[http://dx.doi.org/10.3390/biom10010074] [PMID: 31906487]
[75]
Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; Marron, T.U.; Xie, H.; Patel, M.; Tuballes, K.; Van Oekelen, O.; Rahman, A.; Kovatch, P.; Aberg, J.A.; Schadt, E.; Jagannath, S.; Mazumdar, M.; Charney, A.W.; Firpo-Betancourt, A.; Mendu, D.R.; Jhang, J.; Reich, D.; Sigel, K.; Cordon-Cardo, C.; Feldmann, M.; Parekh, S.; Merad, M.; Gnjatic, S. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med., 2020, 26(10), 1636-1643.
[http://dx.doi.org/10.1038/s41591-020-1051-9] [PMID: 32839624]
[76]
Rivero-Segura, N.A.; Gomez-Verjan, J.C. In silico screening of natural products isolated from mexican herbal medicines against COVID-19. Biomolecules, 2021, 11(2), 216.
[http://dx.doi.org/10.3390/biom11020216] [PMID: 33557097]
[77]
Xie, X.; Peng, J.; Huang, K.; Huang, J.; Shen, X.; Liu, P.; Huang, H. Polydatin ameliorates experimental diabetes-induced fibronectin through inhibiting the activation of nf-κb signaling pathway in rat glomerular mesangial cells. Mol. Cell. Endocrinol., 2012, 362(1-2), 183-193.
[http://dx.doi.org/10.1016/j.mce.2012.06.008] [PMID: 22732364]
[78]
Bennamara, A.; Abourriche, A.; Berrada, M.; Charrouf, M.; Chaib, N.; Boudouma, M.; Garneau, F.X. Methoxybifurcarenone: An antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry, 1999, 52(1), 37-40.
[http://dx.doi.org/10.1016/S0031-9422(99)00040-0] [PMID: 10466223]
[79]
Qamar, M.T.; Ashfaq, U.A.; Tusleem, K.; Mumtaz, A.; Tariq, Q.; Goheer, A.; Ahmed, B. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach. Pak. J. Pharm. Sci., 2017, 30(6), 2119-2137.
[PMID: 29175781]
[80]
Brito, M.A.d. Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz. J. Pharm. Sci., 2011, 47(4), 797-805.
[http://dx.doi.org/10.1590/S1984-82502011000400017]
[81]
Lin, J.H.; Lu, A.Y. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev., 1997, 49(4), 403-449.
[PMID: 9443165]
[82]
Lin, J.; Sahakian, D.C.; de Morais, S.M.; Xu, J.J.; Polzer, R.J.; Winter, S.M. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem., 2003, 3(10), 1125-1154.
[http://dx.doi.org/10.2174/1568026033452096] [PMID: 12769713]
[83]
Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.; Olsen, L.; Jørgensen, F.S. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab. Dispos., 2009, 37(3), 658-664.
[http://dx.doi.org/10.1124/dmd.108.023507] [PMID: 19056915]
[84]
Guengerich, F.P. Cytochromes P450, drugs, and diseases. Mol. Interv., 2003, 3(4), 194-204.
[http://dx.doi.org/10.1124/mi.3.4.194] [PMID: 14993447]
[85]
Bibi, Z. Role of cytochrome P450 in drug interactions. Nutr. Metab. (Lond.), 2008, 5(1), 27.
[http://dx.doi.org/10.1186/1743-7075-5-27] [PMID: 18928560]
[86]
Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician, 2007, 76(3), 391-396.
[PMID: 17708140]