Exploring Dual Agonists for PPARα/γ Receptors using Pharmacophore Modeling, Docking Analysis and Molecule Dynamics Simulation

Page: [1450 - 1461] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The Peroxisome Proliferator-Activated Receptors (PPARs) are ligandactivated transcription factors belonging to the nuclear receptor family. The roles of PPARα in fatty acid oxidation and PPARγ in adipocyte differentiation and lipid storage have been widely characterized. Compounds with dual PPARα/γ activity have been proposed, combining the benefits of insulin sensitization and lipid lowering into one drug, allowing a single drug to reduce hyperglycemia and hyperlipidemia while preventing the development of cardiovascular complications.

Methods: The new PPARα/γ agonists were screened through virtual screening of pharmacophores and molecular dynamics simulations. First, in the article, the constructed pharmacophore was used to screen the Ligand Expo Components-pub database to obtain the common structural characteristics of representative PPARα/γ agonist ligands. Then, the accepted ligand structure was modified and replaced to obtain 12 new compounds. Using molecular docking, ADMET and molecular dynamics simulation methods to screen the designed 12 ligands, analyze their docking scores when they bind to the PPARα/γ dual targets, their stability and pharmacological properties when they bind to the PPARα/γ dual targets.

Results: We performed pharmacophore-based virtual screening for 22949 molecules in Ligand Expo Components-pub database. The compounds that were superior to the original ligand were performed structural analysis and modification, and a series of compounds with novel structures were designed. Using precise docking, ADMET prediction and molecular dynamics methods to screen and verify newly designed compounds, and the above compounds show higher docking scores and lower side effects.

Conclusion: 9 new PPARα/γ agonists were obtained by pharmacophore modeling, docking analysis and molecular dynamics simulation.

Keywords: PPARalpha/gamma, agonist, receptor-ligand based pharmacophore, docking, ADMET, molecular dynamics.

Graphical Abstract

[1]
Choi, C.I. Astaxanthin as a peroxisome proliferator-activated receptor (PPAR) modulator: Its therapeutic implications. Mar. Drugs, 2019, 17(4), E242.
[http://dx.doi.org/10.3390/md17040242] [PMID: 31018521]
[2]
d’Angelo, M.; Castelli, V.; Tupone, M.G.; Catanesi, M.; Antonosante, A.; Dominguez-Benot, R.; Ippoliti, R.; Cimini, A.M.; Benedetti, E.; Castelli, V.; Tupone, M.G.; Catanesi, M.; Benedetti, E. Lifestyle and food habits impact on chronic diseases: Roles of PPARs. Int. J. Mol. Sci., 2019, 20(21), 5422.
[http://dx.doi.org/10.3390/ijms20215422] [PMID: 31683535]
[3]
Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(8), E1878.
[http://dx.doi.org/10.3390/ijms20081878] [PMID: 30995737]
[4]
Bai, F.; Liu, Y.; Tu, T.; Li, B.; Xiao, Y.; Ma, Y.; Qin, F.; Xie, J.; Zhou, S.; Liu, Q. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis., 2019, 18(1), 109.
[http://dx.doi.org/10.1186/s12944-019-1059-7] [PMID: 31077199]
[5]
Abdellatif, K.R.A.; Fadaly, W.A.A.; Kamel, G.M.; Elshaier, Y.A.M.M.; El-Magd, M.A. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg. Chem., 2019, 82, 86-99.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.034] [PMID: 30278282]
[6]
Bhargava, P.; Verma, V.K.; Malik, S.; Khan, S.I.; Bhatia, J.; Arya, D.S. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J. Biochem. Mol. Toxicol., 2019, 33(5), e22283.
[http://dx.doi.org/10.1002/jbt.22283] [PMID: 30623541]
[7]
Chen, T.; Zhang, Y.; Liu, Y.; Zhu, D.; Yu, J.; Li, G.; Sun, Z.; Wang, W.; Jiang, H.; Hong, Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY), 2019, 11(18), 7510-7524.
[http://dx.doi.org/10.18632/aging.102263] [PMID: 31562809]
[8]
Baghcheghi, Y.; Salmani, H.; Beheshti, F.; Shafei, M.N.; Sadeghnia, H.R.; Soukhtanloo, M.; Ebrahimzadeh Bideskan, A.; Hosseini, M. Effects of PPAR-γ agonist, pioglitazone on brain tissues oxidative damage and learning and memory impairment in juvenile hypothyroid rats. Int. J. Neurosci., 2019, 129(10), 1024-1038.
[http://dx.doi.org/10.1080/00207454.2019.1632843] [PMID: 31215278]
[9]
Ahsan, W. The journey of thiazolidinediones as modulators of PPARs for the management of diabetes: A current perspective. Curr. Pharm. Des., 2019, 25(23), 2540-2554.
[http://dx.doi.org/10.2174/1381612825666190716094852] [PMID: 31333088]
[10]
Beheshti, F.; Hosseini, M.; Hashemzehi, M.; Soukhtanloo, M.; Khazaei, M.; Shafei, M.N. The effects of PPAR-γ agonist pioglitazone on hippocampal cytokines, brain-derived neurotrophic factor, memory impairment, and oxidative stress status in lipopolysaccharide-treated rats. Iran. J. Basic Med. Sci., 2019, 22(8), 940-948.
[PMID: 31579451]
[11]
Makled, M.N.; Sharawy, M.H.; El-Awady, M.S. The dual PPAR-α/γ agonist saroglitazar ameliorates thioacetamide-induced liver fibrosis in rats through regulating leptin. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(12), 1569-1576.
[http://dx.doi.org/10.1007/s00210-019-01703-5] [PMID: 31367862]
[12]
Rangwala, S.M.; Rhoades, B.; Shapiro, J.S.; Rich, A.S.; Kim, J.K.; Shulman, G.I.; Kaestner, K.H.; Lazar, M.A. Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev. Cell, 2003, 5(4), 657-663.
[http://dx.doi.org/10.1016/S1534-5807(03)00274-0] [PMID: 14536066]
[13]
Ebdrup, S.; Pettersson, I.; Rasmussen, H.B.; Deussen, H.J.; Frost Jensen, A.; Mortensen, S.B.; Fleckner, J.; Pridal, L.; Nygaard, L.; Sauerberg, P. Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor alpha/gamma agonist ragaglitazar. J. Med. Chem., 2003, 46(8), 1306-1317.
[http://dx.doi.org/10.1021/jm021027r] [PMID: 12672231]
[14]
Lee, Y.H.; Kim, J.H.; Kim, S.R.; Jin, H.Y.; Rhee, E.J.; Cho, Y.M.; Lee, B.W. Lobeglitazone, a novel thiazolidinedione, improves non-alcoholic fatty liver disease in type 2 diabetes: Its efficacy and predictive factors related to responsiveness. J. Korean Med. Sci., 2017, 32(1), 60-69.
[http://dx.doi.org/10.3346/jkms.2017.32.1.60] [PMID: 27914133]
[15]
Assaf, N.; El-Shamarka, M.E.; Salem, N.A.; Khadrawy, Y.A.; El Sayed, N.S. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 97, 109793.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109793] [PMID: 31669201]
[16]
Cronet, P.; Petersen, J.F.W.; Folmer, R.; Blomberg, N.; Sjöblom, K.; Karlsson, U.; Lindstedt, E.L.; Bamberg, K. Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; Ligand selectivity and agonist activation in the PPAR family. Structure, 2001, 9(8), 699-706.
[http://dx.doi.org/10.1016/S0969-2126(01)00634-7] [PMID: 11587644]
[17]
Da’adoosh, B.; Marcus, D.; Rayan, A.; King, F.; Che, J.; Goldblum, A. Discovering highly selective and diverse PPAR-delta agonists by ligand based machine learning and structural modeling. Sci. Rep., 2019, 9(1), 1106.
[http://dx.doi.org/10.1038/s41598-019-38508-8] [PMID: 30705343]
[18]
Ranjan Srivastava, A.; Bhatia, R.; Chawla, P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg. Chem., 2019, 89, 102993.
[http://dx.doi.org/10.1016/j.bioorg.2019.102993] [PMID: 31129500]
[19]
Yang, Y.; Shi, C.Y.; Xie, J.; Dai, J.H.; He, S.L.; Tian, Y. Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules, 2020, 25(1), 189.
[http://dx.doi.org/10.3390/molecules25010189] [PMID: 31906524]
[20]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[21]
Ghildiyal, R.; Gupta, S.; Gabrani, R.; Joshi, G.; Gupta, A.; Chaudhary, V.K.; Gupta, V. In silico study of chikungunya polymerase, a potential target for inhibitors. Virusdisease, 2019, 30(3), 394-402.
[http://dx.doi.org/10.1007/s13337-019-00547-0] [PMID: 31803807]
[22]
Gao, Q.; Wang, Y.; Hou, J.; Yao, Q.; Zhang, J. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. J. Comput. Aided Mol. Des., 2017, 31(7), 625-641.
[http://dx.doi.org/10.1007/s10822-017-0028-3] [PMID: 28623487]
[23]
Mansi, I.A.; Al-Sha’er, M.A.; Mhaidat, N.M.; Taha, M.O.; Shahin, R. Investigation of binding characteristics of phosphoinositide-dependent kinase-1 (PDK1) co-crystallized ligands through virtual pharmacophore modeling leading to novel anti-PDK1 hits. Med. Chem., 2020, 16(7), 860-880.
[http://dx.doi.org/10.2174/1573406415666190724131048] [PMID: 31339076]
[24]
Pascual, R.; Almansa, C.; Plata-Salamán, C.; Vela, J.M. A new pharmacophore model for the design of sigma-1 ligands validated on a large experimental dataset. Front. Pharmacol., 2019, 10, 519.
[http://dx.doi.org/10.3389/fphar.2019.00519] [PMID: 31214020]
[25]
Wu, J.W.; Zhang, H.; Li, W.Y.; Tang, X.; Wang, R.L.; Li, H.L.; Zheng, Z.H.; Ma, Y. Design potential selective inhibitors for human leukocyte common antigen-related (PTP-LAR) with fragment replace approach. J. Biomol. Struct. Dyn., 2020, 38(18), 5338-53480.
[http://dx.doi.org/10.1080/07391102.2019.1699862] [PMID: 31787068]
[26]
Wang, S.B.; Liu, H.; Li, G.Y.; Li, J.; Li, X.J.; Lei, K.; Wei, L.C.; Quan, Z.S.; Wang, X.K.; Liu, R.M. Coumarin and 3,4-dihydroquinolinone derivatives: Synthesis, antidepressant activity, and molecular docking studies. Pharmacol. Rep., 2019, 71(6), 1244-1252.
[http://dx.doi.org/10.1016/j.pharep.2019.07.011] [PMID: 31670061]
[27]
Jin, W.Y.; Ma, Y.; Li, W.Y.; Li, H.L.; Wang, R.L. Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics. Comput. Biol. Chem., 2018, 73, 179-188.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.004] [PMID: 29494926]
[28]
Yadav, M.; Khandelwal, S. Homology modeling and molecular dynamics dimulation study of β carbonic anhydrase of Ascaris lumbricoides. Bioinformation, 2019, 15(8), 572-578.
[http://dx.doi.org/10.6026/97320630015572] [PMID: 31719767]
[29]
Yadav, T.C.; Srivastava, A.K.; Dey, A.; Kumar, N.; Raghuwanshi, N.; Pruthi, V. Application of computational techniques to unravel structure-function relationship and their role in therapeutic development. Curr. Top. Med. Chem., 2018, 18(20), 1769-1791.
[http://dx.doi.org/10.2174/1568026619666181120142141] [PMID: 30465508]
[30]
Peng, J.; Li, Y.; Zhou, Y.; Zhang, L.; Liu, X.; Zuo, Z. Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors. J. Recept. Signal Transduct. Res., 2018, 38(3), 246-255.
[http://dx.doi.org/10.1080/10799893.2018.1476544] [PMID: 29843539]
[31]
Li, Y.; Peng, J.; Li, P.; Du, H.; Li, Y.; Liu, X.; Zhang, L.; Wang, L.L.; Zuo, Z. Identification of potential AMPK activator by pharmacophore modeling, molecular docking and QSAR study. Comput. Biol. Chem., 2019, 79, 165-176.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.02.007] [PMID: 30836318]
[32]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem., 2018, 77, 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[33]
Hossain, M.U.; Khan, M.A.; Rakib-Uz-Zaman, S.M.; Ali, M.T.; Islam, M.S.; Keya, C.A.; Salimullah, M. Treating diabetes mellitus: Pharmacophore based designing of potential drugs from gymnema sylvestre against insulin receptor protein. BioMed Res. Int., 2016, 2016, 3187647.
[http://dx.doi.org/10.1155/2016/3187647] [PMID: 27034931]
[34]
Yadava, U.; Shukla, B.K.; Roychoudhury, M.; Kumar, D. Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica: An in silico study. J. Mol. Model., 2015, 21(4), 96.
[http://dx.doi.org/10.1007/s00894-015-2631-3] [PMID: 25799964]
[35]
Konidala, K.K.; Bommu, U.D.; Pabbaraju, N. In silico insights into the identification of potential novel angiogenic inhibitors against human VEGFR-2: A new SAR-based hierarchical clustering approach. J. Recept. Signal Transduct. Res., 2018, 38(4), 372-383.
[http://dx.doi.org/10.1080/10799893.2018.1531891] [PMID: 30396316]
[36]
Tahir, R.A.; Wu, H.; Javed, N.; Khalique, A.; Khan, S.A.F.; Mir, A.; Ahmed, M.S.; Barreto, G.E.; Qing, H.; Ashraf, G.M.; Sehgal, S.A. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J. Cell. Physiol., 2019, 234(8), 13263-13276.
[http://dx.doi.org/10.1002/jcp.27999] [PMID: 30569503]
[37]
Shravan, U.M.; Karunakar, P.; Krishnamurthy, V. Homology modeling, virtual screening and dynamics study of proteins involved in Pebrine - Serine protease inhibitor 106 and spore wall protein 26. J. Biomol. Struct. Dyn., 2019, 38(17), 5148-5158.
[PMID: 31760870]
[38]
Sheikh, I.A.; Jiffri, E.H.; Ashraf, G.M.; Kamal, M.A. Structural insights into the camel milk lactoperoxidase: Homology modeling and molecular dynamics simulation studies. J. Mol. Graph. Model., 2019, 86, 43-51.
[http://dx.doi.org/10.1016/j.jmgm.2018.10.008] [PMID: 30326373]
[39]
Harathi, N.; Pulaganti, M.; Anuradha, C.M.; Kumar Chitta, S. Inhibition of Mycobacterium-RmlA by molecular modeling, dynamics simulation, and docking; Adv Bioinformatics, 2016, p. 9841250.