Combinatorial Chemistry & High Throughput Screening

Author(s): Suraj N. Mali* and Anima Pandey*

DOI: 10.2174/1386207324666210622162001

1,2,5-Thiadiazole Scaffold: A Review on Recent Progress in Biological Activities

Page: [771 - 787] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Thiadiazoles can be considered as the privileged scaffold having diverse pharmacological potentials such as antihypertensive, anti-HIV, antimicrobials, antileishmanial agents, etc. In particular, 1,2,5-thiadiazoles and their fused analogues are subjects of fast-growing interest due to their higher significance in the fields of biomedicine and material sciences.

Objective: This study aims to collect detailed medicinal information about aspects of 1,2,5- thiadiazole.

Methods:A systemic search has been carried out using PubMed, Google Scholar, CNKI, etc., for relevant studies having the keyword, ‘1,2,5-thiadiazole’.

Results and Conclusion: In this mini-review, we have covered known procedures of the synthesis and explored in details all known advancements of this scaffold concerning to its biological activities.

Keywords: Thiadiazoles, 1, 2, 5-thiadiazole, synthesis, biological activities, anthra[1, 2-c][1, 5]thiadiazole-6, 11-dione, chemistry.

Graphical Abstract

[1]
Manik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep., 2019, 9(1), 1-12.
[PMID: 30626917]
[2]
Longley, D.B.; Johnston, P.G. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
[http://dx.doi.org/10.1002/path.1706] [PMID: 15641020]
[4]
Livermore, D.M. The need for new antibiotics. Clin. Microbiol. Infect., 2004, 10(Suppl. 4), 1-9.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1004.x] [PMID: 15522034]
[5]
Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 2013, 8(1), 27-41.
[http://dx.doi.org/10.1002/cmdc.201200355] [PMID: 23208773]
[6]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, synthesis, antibacterial screening and DNA cleavage for 1, 2, 5-thiadiazole derivative. Curr. Comp. aid. drug des., 2019, 15(5), 445-455.
[7]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[8]
Kumar, D.; Maruthi Kumar, N.; Chang, K.H.; Shah, K. Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(10), 4664-4668.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.023] [PMID: 20692741]
[9]
Dawood, K.M.; Eldebss, T.M.; El-Zahabi, H.S.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042] [PMID: 24231309]
[10]
Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Lu, X.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(3), 1181-1187.
[http://dx.doi.org/10.1016/j.bmc.2011.12.057] [PMID: 22261027]
[11]
Matysiak, J. Evaluation of electronic, lipophilic and membrane affinity effects on antiproliferative activity of 5-substituted-2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles against various human cancer cells. Eur. J. Med. Chem., 2007, 42(7), 940-947.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.033] [PMID: 17320247]
[12]
Tiperciuc, B.; Pârvu, A.; Tamaian, R.; Nastasă, C.; Ionuţ, I.; Oniga, O. New anti-inflammatory thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles with antioxidant properties as potential iNOS inhibitors. Arch. Pharm. Res., 2013, 36(6), 702-714.
[http://dx.doi.org/10.1007/s12272-013-0083-9] [PMID: 23504664]
[13]
Ali, K.A.; Ragab, E.A.; Farghaly, T.A.; Abdalla, M.M. Synthesis of new functionalized 3-substituted [1,2,4]triazolo [4,3-a]pyrimidine derivatives: Potential antihypertensive agents. Acta Pol. Pharm., 2011, 68(2), 237-247.
[PMID: 21485297]
[14]
Can, Ö.D.; Altintop, M.D.; Özkay, Ü.D.; Uçel, U.İ.; Doğruer, B.; Kaplancikli, Z.A. Synthesis of thiadiazole derivatives bearing hydrazone moieties and evaluation of their pharmacological effects on anxiety, depression, and nociception parameters in mice. Arch. Pharm. Res., 2012, 35(4), 659-669.
[http://dx.doi.org/10.1007/s12272-012-0410-6] [PMID: 22553059]
[15]
Clerici, F.; Pocar, D.; Guido, M.; Loche, A.; Perlini, V.; Brufani, M. Synthesis of 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives and evaluation of their antidepressant and anxiolytic activity. J. Med. Chem., 2001, 44(6), 931-936.
[http://dx.doi.org/10.1021/jm001027w] [PMID: 11300875]
[16]
Sharma, B.; Verma, A.; Prajapati, S.; Sharma, U.K. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles. Int. J. Med. Chem., 2013, 2013, 348948.
[http://dx.doi.org/10.1155/2013/348948] [PMID: 25405032]
[17]
Tahghighi, A.; Emami, S.; Razmi, S.; Rezazade Marznaki, F.; Kabudanian Ardestani, S.; Dastmalchi, S.; Kobarfard, F.; Shafiee, A.; Foroumadi, A. New 5-(nitroheteroaryl)-1,3,4-thiadiazols containing acyclic amines at C-2: Synthesis and SAR study for their antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 843-852.
[http://dx.doi.org/10.3109/14756366.2012.689297] [PMID: 22651800]
[18]
Pourrajab, F.; Forouzannia, S.K.; Tabatabaee, S.A. Novel immunomodulatory function of 1,3,4-thiadiazole derivatives with leishmanicidal activity. J. Antimicrob. Chemother., 2012, 67(8), 1968-1978.
[http://dx.doi.org/10.1093/jac/dks144] [PMID: 22581907]
[19]
Siwek, A.; Plech, T.; Stefańska, J.; Stączek, P.; Strzelczyk, A. Molecular properties prediction, docking studies, and antimicrobial screening of 1,3,4-thiadiazole and s-triazole derivatives. Curr Comput Aided Drug Des, 2014, 10(1), 3-14.
[http://dx.doi.org/10.2174/15734099113096660033] [PMID: 24138398]
[20]
Paulrasu, K.; Duraikannu, A.; Palrasu, M.; Shanmugasundaram, A.; Kuppusamy, M.; Thirunavukkarasu, B. Synthesis of 4-methyl-N'-(3-alkyl-2r,6c-diarylpiperidin-4-ylidene)-1,2,3-thiadiazole-5-carbohydrazides with antioxidant, antitumor and antimicrobial activities. Org. Biomol. Chem., 2014, 12(31), 5911-5921.
[http://dx.doi.org/10.1039/C4OB00739E] [PMID: 24986452]
[21]
Ismail, Z.H.; Ghorab, M.M.; Mohamed, E.M.A.; Aly, H.M.; El-Gaby, M.S.A. Antitumor activity of some novel 1, 2, 5-thiadiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(10), 2541-2554.
[http://dx.doi.org/10.1080/10426500801967815]
[22]
Patel, J.Z.; Nevalainen, T.J.; Savinainen, J.R.; Adams, Y.; Laitinen, T.; Runyon, R.S.; Vaara, M.; Ahenkorah, S.; Kaczor, A.A.; Navia-Paldanius, D.; Gynther, M.; Aaltonen, N.; Joharapurkar, A.A.; Jain, M.R.; Haka, A.S.; Maxfield, F.R.; Laitinen, J.T.; Parkkari, T. Optimization of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. ChemMedChem, 2015, 10(2), 253-265.
[http://dx.doi.org/10.1002/cmdc.201402453] [PMID: 25504894]
[23]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[24]
Biden, T.J; Pearson, G.L. Method of treating glucose metabolism disorders comprisingan antagonist of lysosomal acid lipase either alone or in combination. PCT Int. Appl., WO2014000058 A1 20140103. 2014.
[25]
Rai, D.; Chen, W.; Zhan, P.; Liu, H.; Tian, Y.; Liang, X.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Liu, X. Synthesis and anti-HIV activity of 4-(naphthalen-1-yl)-1,2,5-thiadiazol-3-hydroxyl derivatives. Chem. Biol. Drug Des., 2014, 84(4), 420-430.
[http://dx.doi.org/10.1111/cbdd.12328] [PMID: 24674646]
[26]
Biju, P.J.; Taveras, A.G.; Yu, Y. Preparation of diaminothiadiazoles as CXC- and CC-chemokine receptor ligands. PCT Int. Appl., WO 2005066147 A1 20050721. 2005.
[27]
Volotinen, M.; Korjamo, T.; Tolonen, A.; Turpeinen, M.; Pelkonen, O.; Hakkola, J.; Mäenpää, J. Effects of selective serotonin reuptake inhibitors on timolol metabolism in human liver microsomes and cryo-preserved hepatocytes. Basic Clin. Pharmacol. Toxicol., 2010, 106(4), 302-309.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00487.x] [PMID: 19912165]
[28]
Lee, Y.R.; Chen, T.C.; Lee, C.C.; Chen, C.L.; Ahmed Ali, A.A.; Tikhomirov, A.; Guh, J.H.; Yu, D.S.; Huang, H.S. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur. J. Med. Chem., 2015, 102, 661-676.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.052] [PMID: 26344783]
[29]
Rakitin, O.A. Recent developments in the synthesis of 1, 2, 5-thiadiazoles and 2, 1, 3-benzothiadiazoles. Synth., 2019, 51(23), 4338-4347.
[http://dx.doi.org/10.1055/s-0039-1690679]
[30]
Weinstock, L.M.; Davis, P.; Handelsman, B.; Tull, R.J. General synthetic system for 1, 2, 5-thiadiazoles. J. Org. Chem., 1967, 32, 2823-2829.
[http://dx.doi.org/10.1021/jo01284a040]
[31]
Wasson, B.K.; Gibson, W.K.; Stuart, R.S.; Williams, H.W.R. Yates, C.H. -adrenergic blocking agents. 3-(3-Substituted-amino-2-hydroxypropoxy)-4-substituted-1,2,5-thiadiazoles. J. Med. Chem., 1972, 15(6), 651-655.
[http://dx.doi.org/10.1021/jm00276a022] [PMID: 4402289]
[32]
International patent No. PCT/US93/01487, 1972.
[33]
Siddiqui, M.F.; Levey, A.I. Cholinergic therapies in Alzheimer’s disease. Drugs Future, 1999, 24(4), 417-424.
[http://dx.doi.org/10.1358/dof.1999.024.04.668318]
[34]
Ward, J.S.; Merritt, L.; Calligaro, D.O.; Bymaster, F.P.; Shannon, H.E.; Mitch, C.H.; Whitesitt, C.; Brunsting, D.; Sheardown, M.J.; Olesen, P.H.; Swedberg, M.D.; Jeppesen, L.; Sauerberg, P. 1,2,5-Thiadiazole analogues of aceclidine as potent m1 muscarinic agonists. J. Med. Chem., 1998, 41(3), 379-392.
[http://dx.doi.org/10.1021/jm970125n] [PMID: 9464368]
[35]
Sebaa, Z.; Tchouar, N.; Salah, T.; Belaidi, H.; Almi, Z.; Belaidi, S. QSAR studies of 1, 2, 5-thiadiazole derivatives analogues of aceclidine as potent m1 muscarinic agonists. J. Bionanoscience, 2018, 12(1), 119-126.
[http://dx.doi.org/10.1166/jbns.2018.1491]
[36]
Periyasamy, S.; Messer, W.S., Jr; Roknich, S.; Sauerberg, P.; Hoss, W. 1,2,5-Thiadiazole derivatives of arecoline stimulate M1 receptors coupled to phosphoinositide turnover. Brain Res., 1995, 693(1-2), 118-123.
[http://dx.doi.org/10.1016/0006-8993(95)00724-5] [PMID: 8653399]
[37]
Sauerberg, P.; Olesen, P.H.; Sheardown, M.J.; Suzdak, P.D.; Shannon, H.E.; Bymaster, F.P.; Calligaro, D.O.; Mitch, C.H.; Ward, J.S.; Swedberg, M.D. Muscarinic agonists as analgesics. Antinociceptive activity versus M1 activity: SAR of alkylthio-TZTP’s and related 1,2,5-thiadiazole analogs. Life Sci., 1995, 56(11-12), 807-814.
[http://dx.doi.org/10.1016/0024-3205(95)00014-W] [PMID: 10188779]
[38]
Sauerberg, P.; Jeppesen, L.; Olesen, P.H.; Sheardown, M.J.; Fink-Jensen, A.; Rasmussen, T.; Rimvall, K.; Shannon, H.E.; Bymaster, F.P.; DeLapp, N.W.; Calligaro, D.O.; Ward, J.S.; Whitesitt, C.A.; Thomsen, C. Identification of side chains on 1,2,5-thiadiazole-azacycles optimal for muscarinic m1 receptor activation. Bioorg. Med. Chem. Lett., 1998, 8(20), 2897-2902.
[http://dx.doi.org/10.1016/S0960-894X(98)00509-5] [PMID: 9873644]
[39]
Sauerberg, P.; Jeppesen, L.; Olesen, P.H.; Rasmussen, T.; Swedberg, M.D.; Sheardown, M.J.; Fink-Jensen, A.; Thomsen, C.; Thøgersen, H.; Rimvall, K.; Ward, J.S.; Calligaro, D.O.; DeLapp, N.W.; Bymaster, F.P.; Shannon, H.E. Muscarinic agonists with antipsychotic-like activity: Structure-activity relationships of 1,2,5-thiadiazole analogues with functional dopamine antagonist activity. J. Med. Chem., 1998, 41(22), 4378-4384.
[http://dx.doi.org/10.1021/jm981048e] [PMID: 9784113]
[40]
Christopoulos, A.; Grant, M.K.; Ayoubzadeh, N.; Kim, O.N.; Sauerberg, P.; Jeppesen, L.; El-Fakahany, E.E. Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J. Pharmacol. Exp. Ther., 2001, 298(3), 1260-1268.
[PMID: 11504829]
[41]
Rajeswaran, W.G.; Cao, Y.; Huang, X.P.; Wroblewski, M.E.; Colclough, T.; Lee, S.; Liu, F.; Nagy, P.I.; Ellis, J.; Levine, B.A.; Nocka, K.H.; Messer, W.S. Jr Design, synthesis, and biological characterization of bivalent 1-methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole derivatives as selective muscarinic agonists. J. Med. Chem., 2001, 44(26), 4563-4576.
[http://dx.doi.org/10.1021/jm0102405] [PMID: 11741475]
[42]
Cao, Y.; Zhang, M.; Wu, C.; Lee, S.; Wroblewski, M.E.; Whipple, T.; Nagy, P.I.; Takács-Novák, K.; Balázs, A.; Torös, S.; Messer, W.S. Jr Synthesis and biological characterization of 1-methyl-1,2,5,6-tetrahydropyridyl-1,2,5-thiadiazole derivatives as muscarinic agonists for the treatment of neurological disorders. J. Med. Chem., 2003, 46(20), 4273-4286.
[http://dx.doi.org/10.1021/jm0301235] [PMID: 13678406]
[43]
Sheffler, D.J.; Williams, R.; Bridges, T.M.; Xiang, Z.; Kane, A.S.; Byun, N.E.; Jadhav, S.; Mock, M.M.; Zheng, F.; Lewis, L.M.; Jones, C.K.; Niswender, C.M.; Weaver, C.D.; Lindsley, C.W.; Conn, P.J. A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol., 2009, 76(2), 356-368.
[http://dx.doi.org/10.1124/mol.109.056531] [PMID: 19407080]
[44]
Weaver, C.D.; Sheffler, D.J.; Lewis, L.M.; Bridges, T.M.; Williams, R.; Nalywajko, N.T.; Kennedy, J.P.; Mulder, M.M.; Jadhav, S.; Aldrich, L.A.; Jones, C.K.; Marlo, J.E.; Niswender, C.M.; Mock, M.M.; Zheng, F.; Conn, P.J.; Lindsley, C.W. Discovery and development of a potent and highly selective small molecule muscarinic acetylcholine receptor subtype I (mAChR 1 or M1) antagonist in vitro and in vivo probe. Curr. Top. Med. Chem., 2009, 9(13), 1217-1226.
[http://dx.doi.org/10.2174/156802609789753635] [PMID: 19807667]
[45]
Maheshwari, A.; Rao, P.S.S.; Messer, W.S. Jr Evaluation of 1,2,5-thiadiazoles as modulators of M1/M5 muscarinic receptor subtypes. Bioorg. Med. Chem., 2014, 22(6), 1838-1844.
[http://dx.doi.org/10.1016/j.bmc.2014.01.049] [PMID: 24582400]
[46]
Ali, A.A.A.; Lee, Y.R.; Chen, T.C.; Chen, C.L.; Lee, C.C.; Shiau, C.Y.; Chiang, C.H.; Huang, H.S. Novel anthra [1, 2-c][1, 2, 5] thiadiazole-6, 11-diones as promising anticancer lead compounds: Biological evaluation, characterization & molecular targets determination. PLoS One, 2016, 11(4), e0154278.
[http://dx.doi.org/10.1371/journal.pone.0154278] [PMID: 27100886]
[47]
Agnese, C.P.; Antonella, F.; Alex, D.; Stefano, S.; Donatella, B.; Alessandro, B.; Elisa, L.; Marco, P.; Michael, K.; Jean-Marie, C.; Christophe, M.; Marco, L.L. Al-Karadaghi, Salam 4-Hydroxy-N-[3,5-bisIJtrifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: A novel inhibitor of the canonical NF-κB cascade. MedChemComm, 2017, 8, 1850-1855.
[http://dx.doi.org/10.1039/C7MD00278E] [PMID: 30108896]
[48]
Pippione, A.C.; Giraudo, A.; Bonanni, D.; Carnovale, I.M.; Marini, E.; Cena, C.; Costale, A.; Zonari, D.; Pors, K.; Sadiq, M.; Boschi, D.; Oliaro-Bosso, S.; Lolli, M.L. Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach. Eur. J. Med. Chem., 2017, 139, 936-946.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.046] [PMID: 28881288]
[49]
Wang, W.L.; Chen, X.Y.; Gao, Y.; Gao, L.X.; Sheng, L.; Zhu, J.; Xu, L.; Ding, Z.Z.; Zhang, C.; Li, J.Y.; Li, J.; Zhou, Y.B. Benzo[c][1,2,5]thiadiazole derivatives: A new class of potent Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5154-5157.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.059] [PMID: 29100798]
[50]
Sun, Y.; Qu, C.; Chen, H.; He, M.; Tang, C.; Shou, K.; Hong, S.; Yang, M.; Jiang, Y.; Ding, B.; Xiao, Y.; Xing, L.; Hong, X.; Cheng, Z. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem. Sci. (Camb.), 2016, 7(9), 6203-6207.
[http://dx.doi.org/10.1039/C6SC01561A] [PMID: 30034761]
[51]
Agrawal, V.K.; Knaus, E.E.; McNeill, J.H. Pyridine and reduced pyridine analogues of 1, 2, 5-thiadiazoles as histamine H2-receptor antagonists. Eur. J. Med. Chem., 1987, 22(4), 319-323.
[http://dx.doi.org/10.1016/0223-5234(87)90269-8]
[52]
Orsetti, M.; Ghi, P.; Di Stilo, A. 1, 2, 5-thiadiazole-S-oxide derivatives: Histamine H2-receptor antagonism. Eur. J. Pharmacol., 1990, 183(5), 1734-1735.
[http://dx.doi.org/10.1016/0014-2999(90)92039-L]
[53]
Pratt, J.; Jae, H.S.; Rosenberg, S.; Spina, K.; Winn, M.; Buckner, S.; Novosad, E.; Kerkman, D.; Shiosaki, K.; Opgenorth, T.; DeBernardis, H. 5-Membered ring heterocyclic carboxylic acids as angiotensin II antagonists. Bioorg. Med. Chem. Lett., 1994, 4(1), 169-172.
[http://dx.doi.org/10.1016/S0960-894X(01)81141-0]
[54]
Rosen, M.D.; Hack, M.D.; Allison, B.D.; Phuong, V.K.; Woods, C.R.; Morton, M.F.; Prendergast, C.E.; Barrett, T.D.; Schubert, C.; Li, L.; Wu, X.; Wu, J.; Freedman, J.M.; Shankley, N.P.; Rabinowitz, M.H. Discovery of potent cholecystokinin-2 receptor antagonists: Elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis. Bioorg. Med. Chem., 2008, 16(7), 3917-3925.
[http://dx.doi.org/10.1016/j.bmc.2008.01.059] [PMID: 18289861]
[55]
Biju, P.; Taveras, A.G.; Yu, Y.; Zheng, J.; Hipkin, R.W.; Fossetta, J.; Fan, X.; Fine, J.; Lundell, D. 3,4-Diamino-1,2,5-thiadiazole as potent and selective CXCR2 antagonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1434-1437.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.027] [PMID: 19200721]
[56]
Grillo, C.A.; Mirífico, M.V.; Morales, M.L.; Reigosa, M.A.; de Mele, M.F.L. Assessment of cytotoxic and cytogenetic effects of a 1,2,5-thiadiazole derivative on CHO-K1 cells. Its application as corrosion inhibitor. J. Hazard. Mater., 2009, 170(2-3), 1173-1178.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.107] [PMID: 19556056]
[57]
Mac, Ú. Y.; Bony, E.; Delvaux, D.; Pinto, A.; Mathieu, V.; Kiss, R.; Feron, O.; Quetin-Leclercq, J.; Riant, O. Cytotoxic activities and metabolic studies of new combretastatin analogues. Med. Chem. Res., 2015, 24(8), 3143-3156.
[58]
Miller, S.L.; Aroniadou-Anderjaska, V.; Pidoplichko, V.I.; Figueiredo, T.H.; Apland, J.P.; Krishnan, J.K.; Braga, M.F. The M1 muscarinic receptor antagonist VU0255035 delays the development of status epilepticus after organophosphate exposure and prevents hyperexcitability in the basolateral amygdala. J. Pharmacol. Exp. Ther., 2017, 360(1), 23-32.
[http://dx.doi.org/10.1124/jpet.116.236125] [PMID: 27799295]
[59]
Keown, L.E.; Collins, I.; Cooper, L.C.; Harrison, T.; Madin, A.; Mistry, J.; Reilly, M.; Shaimi, M.; Welch, C.J.; Clarke, E.E.; Lewis, H.D.; Wrigley, J.D.; Best, J.D.; Murray, F.; Shearman, M.S. Novel orally bioavailable γ-secretase inhibitors with excellent in vivo activity. J. Med. Chem., 2009, 52(11), 3441-3444.
[http://dx.doi.org/10.1021/jm900056p] [PMID: 19432431]
[60]
Jarvis, A.; Allerston, C.K.; Jia, H.; Herzog, B.; Garza-Garcia, A.; Winfield, N.; Ellard, K.; Aqil, R.; Lynch, R.; Chapman, C.; Hartzoulakis, B.; Nally, J.; Stewart, M.; Cheng, L.; Menon, M.; Tickner, M.; Djordjevic, S.; Driscoll, P.C.; Zachary, I.; Selwood, D.L. Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem., 2010, 53(5), 2215-2226.
[http://dx.doi.org/10.1021/jm901755g] [PMID: 20151671]
[61]
Remizov, Y.O.; Kornev, A.A.; Pevzner, L.M.; Petrov, M.L.; Boitsov, V.M.; Stepakov, A.V. In vitro activity of organochalcogen compounds: i. cytotoxic effect of 4-(1, 2, 3-thiadiazol-4-yl) furans against k562 and hela tumor cell lines. Russ. J. Gen. Chem., 2020, 90(11), 2208-2213.
[http://dx.doi.org/10.1134/S1070363220110328]
[62]
Sainas, S.; Pippione, A.C.; Giorgis, M.; Lupino, E.; Goyal, P.; Ramondetti, C.; Buccinnà, B.; Piccinini, M.; Braga, R.C.; Andrade, C.H.; Andersson, M.; Moritzer, A.C.; Friemann, R.; Mensa, S.; Al-Kadaraghi, S.; Boschi, D.; Lolli, M.L. Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. Eur. J. Med. Chem., 2017, 129, 287-302.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.017] [PMID: 28235702]
[63]
Chen, H.; Li, M.; Liu, Z.; Hu, R.; Li, S.; Guo, Y.; Lv, F.; Liu, L.; Wang, Y.; Yi, Y.; Wang, S. Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Sci. China Chem., 2018, 61(1), 113-117.
[http://dx.doi.org/10.1007/s11426-017-9034-y]