Efficient Synthesis and Biological Evaluation of 6-Trifluoroethoxy Functionalized Pteridine Derivatives as EGFR Inhibitors

Page: [353 - 363] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Pteridine-based scaffolds have been widely prevalent in pharmaceuticals, such as kinase inhibitors targeting EGFR, FLT3 and PI3K/mTOR which are attractive targets for the anticancer therapy.

Objective: This work aimed at designing and synthesizing 6-2,2,2-trifluoroethoxy functionalized pteridine-based derivatives for investigation of their anti-cancer activities as EGFR inhibitor.

Methods: Pteridine-based derivatives were synthesized in 6 steps involving amination, bromination, cyclization, alkoxylation, chlorination and coupling reactions. Cellular anti-proliferative activities and inhibition activities on EGFR signaling of these pteridine derivatives in vitro were determined by the MTT assay and western blot analysis, respectively. Molecular docking simulation studies were carried out by the crystallographic structure of the erlotinib/EGFR kinase domain [Protein Data Bank (PDB) code: 1M17].

Results: The compound 7m, with IC50 values of 27.40 μM on A549 cell line, exhibited comparable anti-proliferative activity relative to the positive control. Besides, western blots showed its obvious down-regulation of p-EGFR and p-ERK expression at 0.8 μM. The molecular docking model displayed a hydrogen bond between Met-769 amide nitrogen and N-1 in pteridine motif of 7m which lied at the ATP binding site of EGFR kinase domain.

Conclusion: The inhibition of 7m on cellular growth was comparable to that of the positive control. The inhibitory activities of 7m on EGFR phosphorylation and ERK phosphorylation in A549 cell line were relatively superior to that of the positive control. Both results suggested that the antiproliferative activity of 7m against A549 cell line was caused by inhibition of EGFR signaling pathway, providing a new perspective for the modification of pteridine-based derivatives as EGFR inhibitor.

Keywords: Pteridine, derivatives, EGFR, inhibitor, 2, 2, 2-trifluoroethoxy, antitumor activity.

Graphical Abstract

[1]
Carmona-Martínez, V.; Ruiz-Alcaraz, A.J.; Vera, M.; Guirado, A.; Martínez-Esparza, M.; García-Peñarrubia, P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med. Res. Rev., 2019, 39(2), 461-516.
[http://dx.doi.org/10.1002/med.21529] [PMID: 30341778]
[2]
Zhao, Y.; Shadrick, W.R.; Wallace, M.J.; Wu, Y.; Griffith, E.C.; Qi, J.; Yun, M-K.; White, S.W.; Lee, R.E. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 3950-3954.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.006] [PMID: 27423480]
[3]
Pontiki, E.; Hadjipavlou-Litina, D.; Patsilinakos, A.; Tran, T.M.; Marson, C.M. Pteridine-2,4-diamine derivatives as radical scavengers and inhibitors of lipoxygenase that can possess anti-inflammatory properties. Future Med. Chem., 2015, 7(14), 1937-1951.
[http://dx.doi.org/10.4155/fmc.15.104] [PMID: 26423719]
[4]
Ferrand, G.; Dumas, H.; Depin, J.C.; Quentin, Y. Synthesis and potential antiallergic activity of new pteridinones and related compounds. Eur. J. Med. Chem., 1996, 31(4), 273-280.
[http://dx.doi.org/10.1016/0223-5234(96)80364-3]
[5]
De Jonghe, S.; Marchand, A.; Gao, L-J.; Calleja, A.; Cuveliers, E.; Sienaert, I.; Herman, J.; Clydesdale, G.; Sefrioui, H.; Lin, Y.; Pfleiderer, W.; Waer, M.; Herdewijn, P. Synthesis and in vitro evaluation of 2-amino-4-N-piperazinyl-6-(3,4-dimethoxyphenyl)-pteridines as dual immunosuppressive and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2011, 21(1), 145-149.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.053] [PMID: 21131199]
[6]
Li, Z-H.; Zhao, T-Q.; Liu, X-Q.; Zhao, B.; Wang, C.; Geng, P-F.; Cao, Y-Q.; Fu, D-J.; Jiang, L-P.; Yu, B.; Liu, H-M. Synthesis and preliminary antiproliferative activity of new pteridin-7(8H)-one derivatives. Eur. J. Med. Chem., 2018, 143, 1396-1405.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.037] [PMID: 29113745]
[7]
Langie, S.A.; Achterfeldt, S.; Gorniak, J.P.; Halley-Hogg, K.J.; Oxley, D.; van Schooten, F.J.; Godschalk, R.W.; McKay, J.A.; Mathers, J.C. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J., 2013, 27(8), 3323-3334.
[http://dx.doi.org/10.1096/fj.12-224121] [PMID: 23603834]
[8]
Cunnington, C.; Van Assche, T.; Shirodaria, C.; Kylintireas, I.; Lindsay, A.C.; Lee, J.M.; Antoniades, C.; Margaritis, M.; Lee, R.; Cerrato, R.; Crabtree, M.J.; Francis, J.M.; Sayeed, R.; Ratnatunga, C.; Pillai, R.; Choudhury, R.P.; Neubauer, S.; Channon, K.M. Systemic and vascular oxidation limits the efficacy of oral tetrahydrobiopterin treatment in patients with coronary artery disease. Circulation, 2012, 125(11), 1356-1366.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.038919] [PMID: 22315282]
[9]
Kompis, I.M.; Islam, K.; Then, R.L. DNA and RNA synthesis: antifolates. Chem. Rev., 2005, 105(2), 593-620.
[http://dx.doi.org/10.1021/cr0301144] [PMID: 15700958]
[10]
Sramek, M.; Neradil, J.; Veselska, R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(3), 499-503.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.014] [PMID: 27993660]
[11]
Hao, Y.; Wang, X.; Zhang, T.; Sun, D.; Tong, Y.; Xu, Y.; Chen, H.; Tong, L.; Zhu, L.; Zhao, Z.; Chen, Z.; Ding, J.; Xie, H.; Xu, Y.; Li, H. Discovery and structural optimization of N5-substituted 6,7-dioxo-6,7-dihydropteridines as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation. J. Med. Chem., 2016, 59(15), 7111-7124.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00403] [PMID: 27396610]
[12]
Sun, D.; Yang, Y.; Lyu, J.; Zhou, W.; Song, W.; Zhao, Z.; Chen, Z.; Xu, Y.; Li, H. Discovery and rational design of pteridin-7(8H)-one-based inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants. J. Med. Chem., 2016, 59(13), 6187-6200.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00374] [PMID: 27266526]
[13]
Liu, K.K.; Bagrodia, S.; Bailey, S.; Cheng, H.; Chen, H.; Gao, L.; Greasley, S.; Hoffman, J.E.; Hu, Q.; Johnson, T.O.; Knighton, D.; Liu, Z.; Marx, M.A.; Nambu, M.D.; Ninkovic, S.; Pascual, B.; Rafidi, K.; Rodgers, C.M.; Smith, G.L.; Sun, S.; Wang, H.; Yang, A.; Yuan, J.; Zou, A. 4-methylpteridinones as orally active and selective PI3K/mTOR dual inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(20), 6096-6099.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.045] [PMID: 20817449]
[14]
Yarden, Y.; Pines, G. The ERBB network: At last, cancer therapy meets systems biology. Nat. Rev. Cancer, 2012, 12(8), 553-563.
[http://dx.doi.org/10.1038/nrc3309] [PMID: 22785351]
[15]
Smith, C.C.; Wang, Q.; Chin, C-S.; Salerno, S.; Damon, L.E.; Levis, M.J.; Perl, A.E.; Travers, K.J.; Wang, S.; Hunt, J.P.; Zarrinkar, P.P.; Schadt, E.E.; Kasarskis, A.; Kuriyan, J.; Shah, N.P. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature, 2012, 485(7397), 260-263.
[http://dx.doi.org/10.1038/nature11016] [PMID: 22504184]
[16]
Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S.T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100.
[http://dx.doi.org/10.1186/s12943-017-0670-3] [PMID: 28592260]
[17]
Hou, Y.; Zhu, L.; Li, Z.; Shen, Q.; Xu, Q.; Li, W.; Liu, Y.; Gong, P. Design, synthesis and biological evaluation of novel 7-amino-[1,2,4]triazolo[4,3-f]pteridinone, and 7-aminotetrazolo[1,5-f]pteridinone derivative as potent antitumor agents. Eur. J. Med. Chem., 2019, 163, 690-709.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.009] [PMID: 30572179]
[18]
Matter, H.; Kotsonis, P.; Klingler, O.; Strobel, H.; Fröhlich, L.G.; Frey, A.; Pfleiderer, W.; Schmidt, H.H. Structural requirements for inhibition of the neuronal nitric oxide synthase (NOS-I): 3D-QSAR analysis of 4-oxo- and 4-amino-pteridine-based inhibitors. J. Med. Chem., 2002, 45(14), 2923-2941.
[http://dx.doi.org/10.1021/jm020074g] [PMID: 12086480]
[19]
Kandahary, R.K.; Hossion, A.M.L.; Ashida, N.; Nagamatsu, T. Novel and facil synthesis and evaluation of antitumor activities of 6,7-bisaryl-1-(-D-ribofuranosyl)pteridine-2,4(1H,3H)-diones. Heterocycles, 2010, 80(1), 557-577.
[http://dx.doi.org/10.3987/COM-09-S(S)77]
[20]
Leroux, F.; Jeschke, P.; Schlosser, M. α-fluorinated ethers, thioethers, and amines: anomerically biased species. Chem. Rev., 2005, 105(3), 827-856.
[http://dx.doi.org/10.1021/cr040075b] [PMID: 15755078]
[21]
Leroux, F.R.; Manteau, B.; Vors, J-P.; Pazenok, S. Trifluoromethyl ethers--synthesis and properties of an unusual substituent. Beilstein J. Org. Chem., 2008, 4, 13.
[http://dx.doi.org/10.3762/bjoc.4.13] [PMID: 18941485]
[22]
Ellingson, R.C.; Henry, R.L. McDonald; F. G. Pyrazine chemistry. I. derivatives of 3-aminopyrazinoic acid. J. Am. Chem. Soc., 1945, 67(10), 1711-1713.
[http://dx.doi.org/10.1021/ja01226a028]
[23]
Vontora, T.; Paláta, K.; Lyčka, A. Homolytic carbamoylation and alkoxycarbonylation of 2-aminopyrazine. Collect. Czech. Chem. Commun., 1989, 54(5), 1306-1310.
[http://dx.doi.org/10.1135/cccc19891306]
[24]
Kushner, S.; Dalalian, H.; Sanjurjo, J.L.; Bach, F.L., Jr; Safir, S.R.; Smith, V.K., Jr; Williams, J.H. Experimental chemotherapy of tuberculosis. 11. the synthesis of pyrazinamides and related compound. J. Am. Chem. Soc., 1952, 74(14), 3617-3621.
[http://dx.doi.org/10.1021/ja01134a045]
[25]
Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. Efficient and selective microwave-assisted copper-catalyzed synthesis of quinazolinone derivatives in aqueous. Synth. Commun., 2018, 48(24), 3089-3098.
[http://dx.doi.org/10.1080/00397911.2018.1533974]
[26]
Taylor, E.C., Jr; Carbon, J.A.; Hoff, D.R. Pteridines. X. a new approach to the synthesis of pteridines. J. Am. Chem. Soc., 1953, 75(8), 1904-1908.
[http://dx.doi.org/10.1021/ja01104a037]
[27]
Osdene, T.S.; Taylor, E.C. A new synthetic approach to pteridines. J. Am. Chem. Soc., 1956, 78(20), 5451-5452.
[http://dx.doi.org/10.1021/ja01601a084]
[28]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[http://dx.doi.org/10.1126/science.1099314] [PMID: 15118125]
[29]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; McGuinn, W.D., Jr; Morse, D.; Abraham, S.; Rahman, A.; Liang, C.; Lostritto, R.; Baird, A.; Pazdur, R. United states food and drug administration drug approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res., 2004, 10(4), 1212-1218.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0564] [PMID: 14977817]
[30]
Cohen, M.H.; Williams, G.A.; Sridhara, R. Chen, Gang; Pazdur, R. United states food and drug administration drug approval summary: Gefitinib (ZD1839; Iressa) tablets. Oncologist, 2003, 8(4), 303-306.
[http://dx.doi.org/10.1634/theoncologist.8-4-303] [PMID: 12897327]
[31]
Han, C.; Huang, Z.; Zheng, C.; Wan, L.; Zhang, L.; Peng, S.; Ding, K.; Ji, H.; Tian, J.; Zhang, Y. Novel hybrids of (phenylsulfonyl) furoxan and anilinopyrimidine as potent and selective epidermal growth factor receptor inhibitors for intervention of non-small-cell lung cancer. J. Med. Chem., 2013, 56(11), 4738-4748.
[http://dx.doi.org/10.1021/jm400463q] [PMID: 23668441]
[32]
Zhai, M.; Liu, S.; Gao, M.; Wang, L.; Sun, J.; Du, J.; Guan, Q.; Bao, K.; Zuo, D.; Wu, Y.; Zhang, W. 3,5-Diaryl-1H-pyrazolo[3,4-b]pyridines as potent tubulin polymerization inhibitors: Rational design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 426-435.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.053] [PMID: 30831410]
[33]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272.
[http://dx.doi.org/10.1074/jbc.M207135200] [PMID: 12196540]