Anti-Obesity Medications in Cancer Therapy: A Comprehensive Insight

Page: [476 - 494] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.

Keywords: Obesity, cancer, anti-obesity medicines, phytochemicals, signaling pathways, metastasis.

Graphical Abstract

[1]
Khan, N.; Afaq, F.; Mukhtar, H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxidants & redox signaling., 2008, 10(3), 475-510..
[http://dx.doi.org/10.1089/ars.2007.1740]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Ford, N.A.; Lashinger, L.M.; Allott, E.H.; Hursting, S.D. Mechanistic targets and phytochemical strategies for breaking the obesity-cancer link. Front. Oncol., 2013, 3, 209.
[http://dx.doi.org/10.3389/fonc.2013.00209] [PMID: 23967401]
[4]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[5]
De Pergola, G.; Silvestris, F. Obesity as a major risk factor for cancer. J. Obes., 2013, 2013, 291546.
[http://dx.doi.org/10.1155/2013/291546] [PMID: 24073332]
[6]
Azadbakht, L.; Jamali-Gojani, Z.; Heidari-Beni, M. Anti-obesity drug orlistat (xenical) is a novel antitumor medication. Shiraz E Med J, 2015, 16.
[http://dx.doi.org/10.17795/semj26242]
[7]
Gunter, M.J.; Hoover, D.R.; Yu, H.; Wassertheil-Smoller, S.; Rohan, T.E.; Manson, J.E.; Li, J.; Ho, G.Y.; Xue, X.; Anderson, G.L.; Kaplan, R.C.; Harris, T.G.; Howard, B.V.; Wylie-Rosett, J.; Burk, R.D.; Strickler, H.D. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst., 2009, 101(1), 48-60.
[http://dx.doi.org/10.1093/jnci/djn415] [PMID: 19116382]
[8]
Ulanet, D.B.; Ludwig, D.L.; Kahn, C.R.; Hanahan, D. Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 10791-10798.
[http://dx.doi.org/10.1073/pnas.0914076107] [PMID: 20457905]
[9]
Bol, D.K.; Kiguchi, K.; Gimenez-Conti, I.; Rupp, T.; DiGiovanni, J. Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene, 1997, 14(14), 1725-1734.
[http://dx.doi.org/10.1038/sj.onc.1201011] [PMID: 9135074]
[10]
Weigelt, B.; Peterse, J.L.; van ’t Veer, L.J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer, 2005, 5(8), 591-602.
[http://dx.doi.org/10.1038/nrc1670] [PMID: 16056258]
[11]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[12]
Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; Yamada, S.D.; Peter, M.E.; Gwin, K.; Lengyel, E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med., 2011, 17(11), 1498-1503.
[http://dx.doi.org/10.1038/nm.2492] [PMID: 22037646]
[13]
Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Obesity and cancer: local and systemic mechanisms. Annu. Rev. Med., 2015, 66, 297-309.
[http://dx.doi.org/10.1146/annurev-med-050913-022228] [PMID: 25587653]
[14]
Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer--viewpoint of the IARC working group. N. Engl. J. Med., 2016, 375(8), 794-798.
[http://dx.doi.org/10.1056/NEJMsr1606602] [PMID: 27557308]
[15]
Alqahtani, S.; Qosa, H.; Primeaux, B.; Kaddoumi, A. Orlistat limits cholesterol intestinal absorption by Niemann-pick C1-like 1 (NPC1L1) inhibition. Eur. J. Pharmacol., 2015, 762, 263-269.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.060] [PMID: 26048312]
[16]
Igel, L.I.; Kumar, R.B.; Saunders, K.H.; Aronne, L.J. Practical use of pharmacotherapy for obesity. Gastroenterology, 2017, 152(7), 1765-1779.
[http://dx.doi.org/10.1053/j.gastro.2016.12.049] [PMID: 28192104]
[17]
Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol. Ther., 2017, 170, 116-147.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.015] [PMID: 27773782]
[18]
Redman, LM; Ravussin, E Lorcaserin for the treatment of obesity. Drugs of today (Barcelona, Spain : 1998)., 2010, 46(12), 901-910.
[http://dx.doi.org/10.1358/dot.2010.46.12.1556433]
[19]
Horn, H.; Böhme, B.; Dietrich, L.; Koch, M. Endocannabinoids in body weight control. Pharmaceuticals (Basel), 2018, 11(2), E55.
[http://dx.doi.org/10.3390/ph11020055] [PMID: 29849009]
[20]
Axel, A.M.; Mikkelsen, J.D.; Hansen, H.H. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat. Neuropsychopharmacology, 2010, 35(7), 1464-1476.
[http://dx.doi.org/10.1038/npp.2010.16] [PMID: 20200509]
[21]
Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy, 2000, 20(3), 270-279.
[http://dx.doi.org/10.1592/phco.20.4.270.34882] [PMID: 10730683]
[22]
Bryson, A.; de la Motte, S.; Dunk, C. Reduction of dietary fat absorption by the novel gastrointestinal lipase inhibitor cetilistat in healthy volunteers. Br. J. Clin. Pharmacol., 2009, 67(3), 309-315.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03311.x] [PMID: 19220279]
[23]
Adams, J.M.; Pei, H.; Sandoval, D.A.; Seeley, R.J.; Chang, R.B.; Liberles, S.D.; Olson, D.P. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes, 2018, 67(8), 1538-1548.
[http://dx.doi.org/10.2337/db17-1385] [PMID: 29776968]
[24]
Srivastava, G.; Apovian, C. Future pharmacotherapy for obesity: New anti-obesity drugs on the horizon. Curr. Obes. Rep., 2018, 7(2), 147-161.
[http://dx.doi.org/10.1007/s13679-018-0300-4] [PMID: 29504049]
[25]
Li, Z.; Liang, Y.; Xia, N.; Lai, Y.; Pan, H.; Zhou, S.; Jiang, F.; He, Y. Liraglutide reduces body weight by upregulation of adenylate cyclase 3. Nutr. Diabetes, 2017, 7(5), e265.
[http://dx.doi.org/10.1038/nutd.2017.17] [PMID: 28481334]
[26]
Malin, S.K.; Kashyap, S.R. Effects of metformin on weight loss: potential mechanisms. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(5), 323-329.
[http://dx.doi.org/10.1097/MED.0000000000000095] [PMID: 25105996]
[27]
Mack, C.M.; Smith, P.A.; Athanacio, J.R.; Xu, K.; Wilson, J.K.; Reynolds, J.M.; Jodka, C.M.; Lu, M.G.; Parkes, D.G. Glucoregulatory effects and prolonged duration of action of davalintide: a novel amylinomimetic peptide. Diabetes Obes. Metab., 2011, 13(12), 1105-1113.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01465.x] [PMID: 21733060]
[28]
Kim, G.W.; Lin, J.E.; Blomain, E.S.; Waldman, S.A. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin. Pharmacol. Ther., 2014, 95(1), 53-66.
[http://dx.doi.org/10.1038/clpt.2013.204] [PMID: 24105257]
[29]
Padwal, R. Contrave, a bupropion and naltrexone combination therapy for the potential treatment of obesity. Curr. Opin. Investig. Drugs (London, England : 2000)., 2009, 10(10), 1117-1125.
[30]
Pan, M.H.; Wu, J.C.; Ho, C.T.; Lai, C.S. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors, 2018, 44(1), 50-60.
[http://dx.doi.org/10.1002/biof.1409] [PMID: 29315906]
[31]
Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients, 2018, 10(9), E1211.
[http://dx.doi.org/10.3390/nu10091211] [PMID: 30200502]
[32]
Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm., 2016, 2016, 9340637.
[http://dx.doi.org/10.1155/2016/9340637] [PMID: 28003714]
[33]
Sharma, K.; Kang, S.; Gong, D.; Oh, S.H.; Park, E.Y.; Oak, M.H.; Yi, E. Combination of Garcinia cambogia extract and pear pomace extract additively suppresses adipogenesis and enhances lipolysis in 3T3-L1 Cells. Pharmacogn. Mag., 2018, 14(54), 220-226.
[http://dx.doi.org/10.4103/pm.pm_388_17] [PMID: 29720835]
[34]
Mashmoul, M.; Azlan, A.; Khaza’ai, H.; Yusof, B.N.; Noor, S.M. Saffron: A natural potent antioxidant as a promising anti-obesity drug. Antioxidants, 2013, 2(4), 293-308.
[http://dx.doi.org/10.3390/antiox2040293] [PMID: 26784466]
[35]
Islam, M.T.; Ali, E.S.; Mubarak, M.S. Anti-obesity effect of plant diterpenes and their derivatives: A review. Phytother. Res., 2020, 34(6), 1216-1225.
[http://dx.doi.org/10.1002/ptr.6602] [PMID: 31977122]
[36]
Liu, M.; Xu, L.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Zhao, Y.; Sun, H.; Yao, J.; Lin, Y.; Liu, K.; Peng, J. Potent effects of dioscin against obesity in mice. Sci. Rep., 2015, 5, 7973.
[http://dx.doi.org/10.1038/srep07973] [PMID: 25609476]
[37]
Katashima, C.K.; Silva, V.R.; Gomes, T.L.; Pichard, C.; Pimentel, G.D. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes. Rev., 2017, 18(6), 700-711.
[http://dx.doi.org/10.1111/obr.12523] [PMID: 28335087]
[38]
Lee, H.E.; Yang, G.; Han, S.H.; Lee, J.H.; An, T.J.; Jang, J.K.; Lee, J.Y. Anti-obesity potential of Glycyrrhiza uralensis and licochalcone A through induction of adipocyte browning. Biochem. Biophys. Res. Commun., 2018, 503(3), 2117-2123.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.168] [PMID: 30093114]
[39]
Zhang, Z.; Zhang, H.; Li, B.; Meng, X.; Wang, J.; Zhang, Y.; Yao, S.; Ma, Q.; Jin, L.; Yang, J.; Wang, W.; Ning, G. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun., 2014, 5, 5493.
[http://dx.doi.org/10.1038/ncomms6493] [PMID: 25423280]
[40]
Kim, H.L.; Park, J.; Jung, Y.; Ahn, K.S.; Um, J.Y. Platycodin D, a novel activator of AMP-activated protein kinase, attenuates obesity in db/db mice via regulation of adipogenesis and thermogenesis. Phytomedicine, 2019, 52, 254-263.
[41]
Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications. Biosci. Rep., 2017, 37(3), BSR20170286.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[42]
Wang, J.; Zhang, L.; Dong, L.; Hu, X.; Feng, F.; Chen, F. 6-gingerol, a functional polyphenol of ginger, promotes browning through an AMPK-dependent pathway in 3T3-L1 adipocytes. J. Agric. Food Chem., 2019, 67(51), 14056-14065.
[http://dx.doi.org/10.1021/acs.jafc.9b05072] [PMID: 31789021]
[43]
Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell, 2015, 161(5), 999-1011.
[http://dx.doi.org/10.1016/j.cell.2015.05.011] [PMID: 26000480]
[44]
Di Fabio, G.; Romanucci, V.; Zarrelli, M.; Giordano, M.; Zarrelli, A. C-4 gem-dimethylated oleanes of Gymnema sylvestre and their pharmacological activities. Molecules, 2013, 18(12), 14892-14919.
[http://dx.doi.org/10.3390/molecules181214892] [PMID: 24304585]
[45]
Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J. Nutr. Biochem., 2018, 58, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.02.012] [PMID: 29621669]
[46]
Polus, A.; Zapala, B.; Razny, U.; Gielicz, A.; Kiec-Wilk, B.; Malczewska-Malec, M.; Sanak, M.; Childs, C.E.; Calder, P.C.; Dembinska-Kiec, A. Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production. Biochim. Biophys. Acta, 2016, 1861(11), 1746-1755.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.005] [PMID: 27531277]
[47]
Huang, F.; Del-Río-Navarro, B.E.; Leija-Martinez, J.; Torres-Alcantara, S.; Ruiz-Bedolla, E.; Hernández-Cadena, L.; Barraza-Villarreal, A.; Romero-Nava, R.; Sanchéz-Muñoz, F.; Villafaña, S.; Marchat, L.A.; Hong, E. Effect of omega-3 fatty acids supplementation combined with lifestyle intervention on adipokines and biomarkers of endothelial dysfunction in obese adolescents with hypertriglyceridemia. J. Nutr. Biochem., 2019, 64, 162-169.
[http://dx.doi.org/10.1016/j.jnutbio.2018.10.012] [PMID: 30513433]
[48]
Schcolnik-Cabrera, A.; Chávez-Blanco, A.; Domínguez-Gómez, G.; Taja-Chayeb, L.; Morales-Barcenas, R.; Trejo-Becerril, C.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Dueñas-González, A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin. Investig. Drugs, 2018, 27(5), 475-489.
[http://dx.doi.org/10.1080/13543784.2018.1471132] [PMID: 29723075]
[49]
Zhao, W.; Zhang, X.; Zhou, Z.; Sun, B.; Gu, W.; Liu, J.; Zhang, H. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol. Med. Rep., 2018, 17(4), 5202-5212.
[http://dx.doi.org/10.3892/mmr.2018.8475] [PMID: 29393459]
[50]
Krause, G.C.; Lima, K.G.; Dias, H.B.; da Silva, E.F.G.; Haute, G.V.; Basso, B.S.; Gassen, R.B.; Marczak, E.S.; Nunes, R.S.B.; de Oliveira, J.R. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells. Eur. J. Pharmacol., 2017, 809, 32-41.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.015] [PMID: 28501576]
[51]
Lei, Y.; Yi, Y.; Liu, Y.; Liu, X.; Keller, E.T.; Qian, C.N.; Zhang, J.; Lu, Y. Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer, 2017, 36(1), 17.
[http://dx.doi.org/10.1186/s40880-017-0184-9] [PMID: 28126011]
[52]
Saini, N.; Yang, X. Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(2), 133-143.
[http://dx.doi.org/10.1093/abbs/gmx106] [PMID: 29342230]
[53]
Sharma, A.; Bandyopadhayaya, S.; Chowdhury, K.; Sharma, T.; Maheshwari, R.; Das, A.; Chakrabarti, G.; Kumar, V.; Mandal, C.C. Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One, 2019, 14(1), e0209435.
[http://dx.doi.org/10.1371/journal.pone.0209435] [PMID: 30625181]
[54]
Proto, M.C.; Fiore, D.; Piscopo, C.; Franceschelli, S.; Bizzarro, V.; Laezza, C.; Lauro, G.; Feoli, A.; Tosco, A.; Bifulco, G.; Sbardella, G.; Bifulco, M.; Gazzerro, P. Inhibition of Wnt/β- Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer. Sci. Rep., 2017, 7(1), 11678.
[http://dx.doi.org/10.1038/s41598-017-11688-x] [PMID: 28916833]
[55]
Svacina, S. Treatment of an obese diabetic. Vnitr. Lek., 2010, 56(10), 1078-1081.
[PMID: 21105456]
[56]
Braga, T.; Kraemer-Aguiar, L.G.; Docherty, N.G.; Le Roux, C.W. Treating prediabetes: why and how should we do it? Minerva Med., 2019, 110(1), 52-61.
[http://dx.doi.org/10.23736/S0026-4806.18.05897-4] [PMID: 30371047]
[57]
Saleem, F.; Rizvi, S.W. New Therapeutic approaches in obesity and metabolic syndrome associated with polycystic ovary syndrome. Cureus, 2017, 9(11), e1844.
[http://dx.doi.org/10.7759/cureus.1844] [PMID: 29344438]
[58]
Rodgers, R.J.; Tschöp, M.H.; Wilding, J.P. Anti-obesity drugs: past, present and future. Dis. Model. Mech., 2012, 5(5), 621-626.
[http://dx.doi.org/10.1242/dmm.009621] [PMID: 22915024]
[59]
Hsiao, Y.H.; Chen, N.C.; Koh, Y.C.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Pterostilbene inhibits adipocyte conditioned-medium-induced colorectal cancer cell migration through targeting FABP5-related signaling pathway. J. Agric. Food Chem., 2019, 67(37), 10321-10329.
[http://dx.doi.org/10.1021/acs.jafc.9b03997] [PMID: 31419115]
[60]
Kim, K.; Shin, E.A.; Jung, J.H.; Park, J.E.; Kim, D.S.; Shim, B.S.; Kim, S.H. Ursolic acid induces apoptosis in colorectal cancer cells partially via upregulation of MicroRNA-4500 and inhibition of JAK2/STAT3 phosphorylation. Int. J. Mol. Sci., 2018, 20(1), E114.
[http://dx.doi.org/10.3390/ijms20010114] [PMID: 30597956]
[61]
Lucas, J.; Hsieh, T.C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J.M. Upregulation of PD‑L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300‑mediated NF‑κB signaling. Int. J. Oncol., 2018, 53(4), 1469-1480.
[http://dx.doi.org/10.3892/ijo.2018.4512] [PMID: 30066852]
[62]
Bufu, T.; Di, X.; Yilin, Z.; Gege, L.; Xi, C.; Ling, W. Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anticancer Drugs, 2018, 29(6), 530-538.
[http://dx.doi.org/10.1097/CAD.0000000000000621] [PMID: 29553945]
[63]
Xu, S.; Zhang, L.; Cheng, X.; Yu, H.; Bao, J.; Lu, R. Capsaicin inhibits the metastasis of human papillary thyroid carcinoma BCPAP cells through the modulation of the TRPV1 channel. Food Funct., 2018, 9(1), 344-354.
[http://dx.doi.org/10.1039/C7FO01295K] [PMID: 29185571]
[64]
Xue, L.; Zhang, W.J.; Fan, Q.X.; Wang, L.X. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol. Lett., 2018, 15(2), 1869-1873.
[PMID: 29399197]
[65]
Hsieh, C.C.; Wang, C.H.; Huang, Y.S. Lunasin attenuates obesity-associated metastasis of 4T1 breast cancer cell through anti-inflammatory property. Int. J. Mol. Sci., 2016, 17(12), E2109.
[http://dx.doi.org/10.3390/ijms17122109] [PMID: 27983683]
[66]
Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108.
[http://dx.doi.org/10.1186/s12957-018-1400-z] [PMID: 29898731]
[67]
Lim, W.C.; Kim, H.; Kim, Y.J.; Choi, K.C.; Lee, I.H.; Lee, K.H.; Kim, M.K.; Ko, H. Dioscin suppresses TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration and invasion. Bioorg. Med. Chem. Lett., 2017, 27(15), 3342-3348.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.014] [PMID: 28610976]
[68]
Khan, M.; Maryam, A.; Zhang, H.; Mehmood, T.; Ma, T. Killing cancer with platycodin D through multiple mechanisms. J. Cell. Mol. Med., 2016, 20(3), 389-402.
[http://dx.doi.org/10.1111/jcmm.12749] [PMID: 26648178]
[69]
Colapietro, A.; Mancini, A.; D’Alessandro, A.M.; Festuccia, C. Crocetin and crocin from saffron in cancer chemotherapy and chemoprevention. Anticancer. Agents Med. Chem., 2019, 19(1), 38-47.
[http://dx.doi.org/10.2174/1871520619666181231112453] [PMID: 30599111]
[70]
Chakraborty, D.; Ghosh, S.; Bishayee, K.; Mukherjee, A.; Sikdar, S.; Khuda-Bukhsh, A.R. Antihyperglycemic drug gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway. Integr. Cancer Ther., 2013, 12(5), 433-441.
[http://dx.doi.org/10.1177/1534735413485419] [PMID: 23615751]
[71]
Wang, J.; Xu, J.; Peng, Y.; Xiao, Y.; Zhu, H.; Ding, Z.M.; Hua, H. Phosphorylation of extracellular signal-regulated kinase as a biomarker for cannabinoid receptor 2 activation. Heliyon, 2018, 4(11), e00909.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00909] [PMID: 30450437]
[72]
Luo, Y.; Chen, X.; Luo, L.; Zhang, Q.; Gao, C.; Zhuang, X.; Yuan, S.; Qiao, T. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction. Oncol. Rep., 2018, 39(5), 2252-2260.
[http://dx.doi.org/10.3892/or.2018.6292] [PMID: 29512739]
[73]
Sharma, T.; Mandal, C.C. Omega-3 fatty acids in pathological calcification and bone health. J. Food Biochem., 2020, 44(8), e13333.
[http://dx.doi.org/10.1111/jfbc.13333] [PMID: 32548903]
[74]
Sharma, T.; Sharma, A.; Maheshwari, R.; Pachori, G.; Kumari, P.; Mandal, C.C. Docosahexaenoic acid (DHA) inhibits bone morphogenetic protein-2 (BMP-2) elevated osteoblast potential of metastatic breast cancer (MDA-MB-231) cells in mammary microcalcification. Nutr. Cancer, 2020, 72(5), 873-883.
[http://dx.doi.org/10.1080/01635581.2019.1651879] [PMID: 31409173]
[75]
Mandal, C.C.; Ghosh-Choudhury, T.; Dey, N.; Choudhury, G.G.; Ghosh-Choudhury, N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis, 2012, 33(10), 1897-1908.
[http://dx.doi.org/10.1093/carcin/bgs198] [PMID: 22678116]
[76]
Mandal, C.C.; Ghosh-Choudhury, T.; Yoneda, T.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil prevents breast cancer cell metastasis to bone. Biochem. Biophys. Res. Commun., 2010, 402(4), 602-607.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.063] [PMID: 20971068]
[77]
Ghosh-Choudhury, T.; Mandal, C.C.; Woodruff, K.; St Clair, P.; Fernandes, G.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res. Treat., 2009, 118(1), 213-228.
[http://dx.doi.org/10.1007/s10549-008-0227-7] [PMID: 18953692]
[78]
Gu, Z.; Shan, K.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated fatty acids and their role in cancer chemoprevention. Curr. Pharmacol. Rep., 2015, 1(5), 283-294.
[http://dx.doi.org/10.1007/s40495-015-0043-9] [PMID: 26457243]
[79]
Serini, S.; Ottes Vasconcelos, R.; Fasano, E.; Calviello, G. How plausible is the use of dietary n-3 PUFA in the adjuvant therapy of cancer? Nutr. Res. Rev., 2016, 29(1), 102-125.
[http://dx.doi.org/10.1017/S0954422416000044] [PMID: 27172872]
[80]
Li, Y.R.; Li, S.; Lin, C.C. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors, 2018, 44(1), 69-82.
[http://dx.doi.org/10.1002/biof.1400] [PMID: 29210129]
[81]
Srinivasan, K. Antioxidant potential of spices and their active constituents. Crit. Rev. Food Sci. Nutr., 2014, 54(3), 352-372.
[http://dx.doi.org/10.1080/10408398.2011.585525] [PMID: 24188307]
[82]
Kant, S.; Kumar, A.; Singh, S.M. Fatty acid synthase inhibitor orlistat induces apoptosis in T cell lymphoma: role of cell survival regulatory molecules. Biochim. Biophys. Acta, 2012, 1820(11), 1764-1773.
[http://dx.doi.org/10.1016/j.bbagen.2012.07.010] [PMID: 22877747]
[83]
Menendez, J.A.; Vellon, L.; Lupu, R. The antiobesity drug Orlistat induces cytotoxic effects, suppresses Her-2/neu (erbB-2) oncogene overexpression, and synergistically interacts with trastuzumab (Herceptin) in chemoresistant ovarian cancer cells. Int J Gynecol Cancer, 2006, 16(1), 219-221.
[84]
Fujiwara, J.; Sowa, Y.; Horinaka, M.; Koyama, M.; Wakada, M.; Miki, T.; Sakai, T. The anti-obesity drug orlistat promotes sensitivity to TRAIL by two different pathways in hormone-refractory prostate cancer cells. Int. J. Oncol., 2016, 48(2), 854.
[PMID: 26648205]
[85]
Tang, W.; Zhu, J.; Su, S.; Wu, W.; Liu, Q.; Su, F.; Yu, F. MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS One, 2012, 7(12), e51702.
[http://dx.doi.org/10.1371/journal.pone.0051702] [PMID: 23240057]
[86]
Fox, M.M.; Phoenix, K.N.; Kopsiaftis, S.G.; Claffey, K.P. AMP-activated protein kinase α 2 isoform suppression in primary breast cancer alters AMPK growth control and apoptotic signaling. Genes Cancer, 2013, 4(1-2), 3-14.
[http://dx.doi.org/10.1177/1947601913486346] [PMID: 23946867]
[87]
Podhorecka, M.; Ibanez, B.; Dmoszyńska, A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig. Med. Dosw., 2017, 71(0), 170-175.
[http://dx.doi.org/10.5604/01.3001.0010.3801] [PMID: 28258677]
[88]
Ben Sahra, I.; Regazzetti, C.; Robert, G.; Laurent, K.; Le Marchand-Brustel, Y.; Auberger, P.; Tanti, J.F.; Giorgetti-Peraldi, S.; Bost, F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res., 2011, 71(13), 4366-4372.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1769] [PMID: 21540236]
[89]
Shi, W.Y.; Xiao, D.; Wang, L.; Dong, L.H.; Yan, Z.X.; Shen, Z.X.; Chen, S.J.; Chen, Y.; Zhao, W.L. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis., 2012, 3(3), e275.
[http://dx.doi.org/10.1038/cddis.2012.13] [PMID: 22378068]
[90]
Karnevi, E.; Said, K.; Andersson, R.; Rosendahl, A.H. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer, 2013, 13, 235.
[http://dx.doi.org/10.1186/1471-2407-13-235] [PMID: 23663483]
[91]
Panka, DJ; Atkins, MB; Mier, JW Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clin Cancer Res, 2006, 17(Pt 2), 2371s-2375s.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2539]
[92]
Hirsch, H.A.; Iliopoulos, D.; Tsichlis, P.N.; Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res., 2009, 69(19), 7507-7511.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2994] [PMID: 19752085]
[93]
Castellone, M.D.; Teramoto, H.; Williams, B.O.; Druey, K.M.; Gutkind, J.S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 2005, 310(5753), 1504-1510.
[http://dx.doi.org/10.1126/science.1116221] [PMID: 16293724]
[94]
Kannan-Thulasiraman, P.; Seachrist, D.D.; Mahabeleshwar, G.H.; Jain, M.K.; Noy, N. Fatty acid-binding protein 5 and PPARbeta/delta are critical mediators of epidermal growth factor receptor-induced carcinoma cell growth. J. Biol. Chem., 2010, 285(25), 19106-19115.
[http://dx.doi.org/10.1074/jbc.M109.099770] [PMID: 20424164]
[95]
Chen Lf, ; Fischle, W.; Verdin, E.; Greene, W.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 2001, 293(5535), 1653-1657.
[http://dx.doi.org/10.1126/science.1062374] [PMID: 11533489]
[96]
Barton, B.E.; Karras, J.G.; Murphy, T.F.; Barton, A.; Huang, H.F. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther., 2004, 3(1), 11-20.
[http://dx.doi.org/10.1186/1476-4598-3-11] [PMID: 14749471]
[97]
Ahmed, F.E. Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev. Mol. Diagn., 2007, 7(5), 569-603.
[http://dx.doi.org/10.1586/14737159.7.5.569] [PMID: 17892365]
[98]
Yu, F.Y.; Tu, Y.; Deng, Y.; Guo, C.; Ning, J.; Zhu, Y.; Lv, X.; Ye, H. MiR-4500 is epigenetically downregulated in colorectal cancer and functions as a novel tumor suppressor by regulating HMGA2. Cancer Biol. Ther., 2016, 17(11), 1149-1157.
[http://dx.doi.org/10.1080/15384047.2016.1235661] [PMID: 27686621]
[99]
Agarwal, E.; Brattain, M.G.; Chowdhury, S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell. Signal., 2013, 25(8), 1711-1719.
[http://dx.doi.org/10.1016/j.cellsig.2013.03.025] [PMID: 23603750]
[100]
Zucker, S.; Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1-2), 101-117.
[http://dx.doi.org/10.1023/A:1025867130437] [PMID: 15000152]
[101]
Litan, A.; Langhans, S.A. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front. Cell. Neurosci., 2015, 9, 86.
[http://dx.doi.org/10.3389/fncel.2015.00086] [PMID: 25852478]
[102]
Lee, H.J.; Li, C.F.; Ruan, D.; Powers, S.; Thompson, P.A.; Frohman, M.A.; Chan, C.H. The DNA damage transducer RNF8 facilitates Cancer chemoresistance and progression through twist activation. Mol. Cell, 2016, 63(6), 1021-1033.
[http://dx.doi.org/10.1016/j.molcel.2016.08.009] [PMID: 27618486]
[103]
Lamparska-Przybysz, M.; Gajkowska, B.; Motyl, T. BID-deficient breast cancer MCF-7 cells as a model for the study of autophagy in cancer therapy. Autophagy, 2006, 2(1), 47-48.
[http://dx.doi.org/10.4161/auto.2149] [PMID: 16874058]
[104]
Pan, S.T.; Qin, Y.; Zhou, Z.W.; He, Z.X.; Zhang, X.; Yang, T.; Yang, Y.X.; Wang, D.; Qiu, J.X.; Zhou, S.F. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des. Devel. Ther., 2015, 9, 1601-1626.
[PMID: 25834400]
[105]
Tsai, J.P.; Lee, C.H.; Ying, T.H.; Lin, C.L.; Lin, C.L.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget, 2015, 6(30), 28851-28866.
[http://dx.doi.org/10.18632/oncotarget.4767] [PMID: 26311737]
[106]
Allavena, P.; Mantovani, A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol., 2012, 167(2), 195-205.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04515.x] [PMID: 22235995]
[107]
Fan, F.; Schimming, A.; Jaeger, D.; Podar, K. Targeting the tumor microenvironment: focus on angiogenesis. J. Oncol., 2012, 2012, 281261.
[http://dx.doi.org/10.1155/2012/281261] [PMID: 21876693]
[108]
Mulholland, D.J.; Dedhar, S.; Wu, H.; Nelson, C.C. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene, 2006, 25(3), 329-337.
[http://dx.doi.org/10.1038/sj.onc.1209020] [PMID: 16421604]
[109]
Ruiz, P.A.; Braune, A.; Hölzlwimmer, G.; Quintanilla-Fend, L.; Haller, D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J. Nutr., 2007, 137(5), 1208-1215.
[http://dx.doi.org/10.1093/jn/137.5.1208] [PMID: 17449583]
[110]
Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[111]
Senthilkumar, K.; Elumalai, P.; Arunkumar, R.; Banudevi, S.; Gunadharini, N.D.; Sharmila, G.; Selvakumar, K.; Arunakaran, J. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol. Cell. Biochem., 2010, 344(1-2), 173-184.
[http://dx.doi.org/10.1007/s11010-010-0540-4] [PMID: 20658310]
[112]
Asiedu, M.K.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. TGFbeta/TNF(α)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res., 2011, 71(13), 4707-4719.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4554] [PMID: 21555371]
[113]
Huang, X.; Chen, S.; Xu, L.; Liu, Y.; Deb, D.K.; Platanias, L.C.; Bergan, R.C. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res., 2005, 65(8), 3470-3478.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2807] [PMID: 15833883]
[114]
Ahn, K.S.; Hahn, B.S.; Kwack, K.; Lee, E.B.; Kim, Y.S. Platycodin D-induced apoptosis through nuclear factor-kappaB activation in immortalized keratinocytes. Eur. J. Pharmacol., 2006, 537(1-3), 1-11.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.012] [PMID: 16631160]
[115]
Chun, J.; Joo, E.J.; Kang, M.; Kim, Y.S. Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells. J. Cell. Biochem., 2013, 114(2), 456-470.
[http://dx.doi.org/10.1002/jcb.24386] [PMID: 22961809]
[116]
Qin, H.; Du, X.; Zhang, Y.; Wang, R. Platycodin D, a triterpenoid saponin from Platycodon grandiflorum, induces G2/M arrest and apoptosis in human hepatoma HepG2 cells by modulating the PI3K/Akt pathway. Tumour Biol., 2014, 35(2), 1267-1274.
[http://dx.doi.org/10.1007/s13277-013-1169-1] [PMID: 24048756]
[117]
Li, T.; Tang, Z.H.; Xu, W.S.; Wu, G.S.; Wang, Y.F.; Chang, L.L.; Zhu, H.; Chen, X.P.; Wang, Y.T.; Chen, Y.; Lu, J.J. Platycodin D triggers autophagy through activation of extracellular signal-regulated kinase in hepatocellular carcinoma HepG2 cells. Eur. J. Pharmacol., 2015, 749, 81-88.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.003] [PMID: 25592318]
[118]
Xia, D. Ovarian cancer HO-8910 cell apoptosis induced by crocin in vitro. Nat. Prod. Commun., 2015, 10(2), 249-252.
[http://dx.doi.org/10.1177/1934578X1501000208] [PMID: 25920253]
[119]
Lu, P.; Lin, H.; Gu, Y.; Li, L.; Guo, H.; Wang, F.; Qiu, X. Antitumor effects of crocin on human breast cancer cells. Int. J. Clin. Exp. Med., 2015, 8(11), 20316-20322.
[PMID: 26884946]
[120]
Samarghandian, S.; Shabestari, M.M. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line. Indian J. Urol., 2013, 29(3), 177-183.
[http://dx.doi.org/10.4103/0970-1591.117278] [PMID: 24082436]
[121]
Virág, L.; Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev., 2002, 54(3), 375-429.
[http://dx.doi.org/10.1124/pr.54.3.375] [PMID: 12223530]
[122]
Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A.; Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391(6662), 43-50.
[http://dx.doi.org/10.1038/34112] [PMID: 9422506]
[123]
Freitas, R.D.S.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), E945.
[http://dx.doi.org/10.3390/nu11050945] [PMID: 31035457]
[124]
Mandal, C.C. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev. Anticancer Ther., 2020, 20(9), 797-811.
[http://dx.doi.org/10.1080/14737140.2020.1807950] [PMID: 32772585]
[125]
Papaevangelou, E.; Almeida, G.S.; Box, C.; deSouza, N.M.; Chung, Y.L. The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model. Int. J. Cancer, 2018, 143(4), 992-1002.
[http://dx.doi.org/10.1002/ijc.31392] [PMID: 29569717]
[126]
Gazzerro, P.; Malfitano, A.M.; Proto, M.C.; Santoro, A.; Pisanti, S.; Caruso, M.G.; Notarnicola, M.; Messa, C.; Laezza, C.; Misso, G.; Caraglia, M.; Bifulco, M. Synergistic inhibition of human colon cancer cell growth by the cannabinoid CB1 receptor antagonist rimonabant and oxaliplatin. Oncol. Rep., 2010, 23(1), 171-175.
[PMID: 19956878]
[127]
Sheng, H.; Chen, X.; Liu, B.; Li, P.; Cao, W. Omega-3 polyunsaturated fatty acids enhance cisplatin efficacy in gastric cancer cells by inducing apoptosis via ADORA1. Anticancer. Agents Med. Chem., 2016, 16(9), 1085-1092.
[http://dx.doi.org/10.2174/1871520616666160330104413] [PMID: 27025656]
[128]
Hong, Z.F.; Zhao, W.X.; Yin, Z.Y.; Xie, C.R.; Xu, Y.P.; Chi, X.Q.; Zhang, S.; Wang, X.M. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One, 2015, 10(5), e0121538.
[http://dx.doi.org/10.1371/journal.pone.0121538] [PMID: 25933112]
[129]
Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer, 2004, 4(8), 579-591.
[http://dx.doi.org/10.1038/nrc1408] [PMID: 15286738]
[130]
Ryder, J.R.; Kaizer, A.; Rudser, K.D.; Gross, A.; Kelly, A.S.; Fox, C.K. Effect of phentermine on weight reduction in a pediatric weight management clinic. Int. J. Obesity (2005)., 2017, 41(1), 90-93.
[http://dx.doi.org/10.1038/ijo.2016.185]
[131]
Montan, P.D.; Sourlas, A.; Olivero, J.; Silverio, D.; Guzman, E.; Kosmas, C.E. Pharmacologic therapy of obesity: mechanisms of action and cardiometabolic effects. Ann. Transl. Med., 2019, 7(16), 393.
[http://dx.doi.org/10.21037/atm.2019.07.27] [PMID: 31555707]
[132]
Collins, G.T.; Gerak, L.R.; France, C.P. The behavioral pharmacology and therapeutic potential of lorcaserin for substance use disorders. Neuropharmacology, 2018, 142, 63-71.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.023] [PMID: 29246856]
[133]
Mancini, M.C.; Halpern, A. Orlistat in the prevention of diabetes in the obese patient. Vasc. Health Risk Manag., 2008, 4(2), 325-336.
[http://dx.doi.org/10.2147/VHRM.S6808] [PMID: 18561508]
[134]
Overgaard, R.V.; Petri, K.C.; Jacobsen, L.V.; Jensen, C.B. Liraglutide 3.0 mg for weight management: a population pharmacokinetic analysis. Clin. Pharmacokinet., 2016, 55(11), 1413-1422.
[http://dx.doi.org/10.1007/s40262-016-0410-7] [PMID: 27193270]
[135]
Jacobsen, L.V.; Flint, A.; Olsen, A.K.; Ingwersen, S.H. Liraglutide in type 2 diabetes mellitus: Clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet., 2016, 55(6), 657-672.
[http://dx.doi.org/10.1007/s40262-015-0343-6] [PMID: 26597252]
[136]
Lee, A.; Morley, J.E. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes. Res., 1998, 6(1), 47-53.
[http://dx.doi.org/10.1002/j.1550-8528.1998.tb00314.x] [PMID: 9526970]
[137]
Levri, K.M.; Slaymaker, E.; Last, A.; Yeh, J.; Ference, J.; D’Amico, F.; Wilson, S.A. Metformin as treatment for overweight and obese adults: a systematic review. Ann. Fam. Med., 2005, 3(5), 457-461.
[http://dx.doi.org/10.1370/afm.343] [PMID: 16189063]
[138]
Valencia, W.M.; Palacio, A.; Tamariz, L.; Florez, H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia, 2017, 60(9), 1630-1638.
[http://dx.doi.org/10.1007/s00125-017-4349-5] [PMID: 28770328]
[139]
Jenkins, A.J.; Welsh, P.; Petrie, J.R. Metformin, lipids and atherosclerosis prevention. Curr. Opin. Lipidol., 2018, 29(4), 346-353.
[http://dx.doi.org/10.1097/MOL.0000000000000532] [PMID: 29878903]
[140]
Smith, S.M.; Meyer, M.; Trinkley, K.E. Phentermine/topiramate for the treatment of obesity. Ann. Pharmacother., 2013, 47(3), 340-349.
[http://dx.doi.org/10.1345/aph.1R501] [PMID: 23482732]
[141]
Joo, J.K.; Lee, K.S. Pharmacotherapy for obesity. J. Menopausal Med., 2014, 20(3), 90-96.
[http://dx.doi.org/10.6118/jmm.2014.20.3.90] [PMID: 25580419]
[142]
Chatzis, P.; Tziomalos, K.; Pratilas, G.C.; Makris, V.; Sotiriadis, A.; Dinas, K. The role of antiobesity agents in the management of polycystic ovary syndrome. Folia Med. (Plovdiv), 2018, 60(4), 512-520.
[http://dx.doi.org/10.2478/folmed-2018-0036] [PMID: 31188761]
[143]
Hendricks, E.J. Off-label drugs for weight management. Diabetes Metab. Syndr. Obes., 2017, 10, 223-234.
[http://dx.doi.org/10.2147/DMSO.S95299] [PMID: 28652791]
[144]
Mehrpouya-Bahrami, P.; Chitrala, K.N.; Ganewatta, M.S.; Tang, C.; Murphy, E.A.; Enos, R.T.; Velazquez, K.T.; McCellan, J.; Nagarkatti, M.; Nagarkatti, P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep., 2017, 7(1), 15645.
[http://dx.doi.org/10.1038/s41598-017-15154-6] [PMID: 29142285]
[145]
Sharma, A.M. Sibutramine in overweight/obese hypertensive patients. Int. J. Obesity Related Metabolic Disord., 2001, 25(Suppl 4), S20-S23.
[146]
Holst, J.J.; Albrechtsen, N.J.W.; Gabe, M.B.N.; Rosenkilde, M.M. Oxyntomodulin: Actions and role in diabetes. Peptides, 2018, 100, 48-53.
[http://dx.doi.org/10.1016/j.peptides.2017.09.018] [PMID: 29412831]
[147]
Mack, C.M.; Soares, C.J.; Wilson, J.K.; Athanacio, J.R.; Turek, V.F.; Trevaskis, J.L. Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int. J. Obesity., 2010, 34(2), 385-395.
[148]
Rascol, O.; Poewe, W.; Lees, A.; Aristin, M.; Salin, L.; Juhel, N.; Waldhauser, L.; Schindler, T. ADVANS Study Group. Tesofensine (NS 2330), a monoamine reuptake inhibitor, in patients with advanced Parkinson disease and motor fluctuations: the ADVANS Study. Arch. Neurol., 2008, 65(5), 577-583.
[http://dx.doi.org/10.1001/archneur.65.5.577] [PMID: 18474731]
[149]
Kennett, G.A.; Clifton, P.G. New approaches to the pharmacological treatment of obesity: can they break through the efficacy barrier? Pharmacol. Biochem. Behav., 2010, 97(1), 63-83.
[http://dx.doi.org/10.1016/j.pbb.2010.07.020] [PMID: 20688100]
[150]
Nagao, K.; Jinnouchi, T.; Kai, S.; Yanagita, T. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J. Nutr. Biochem., 2017, 43, 151-155.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.009] [PMID: 28319852]
[151]
McCormack, D.; McFadden, D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev., 2013, 2013, 575482.
[http://dx.doi.org/10.1155/2013/575482] [PMID: 23691264]
[152]
Chang, H.C.; Lewis, D.; Tung, C.Y.; Han, L.; Henriquez, S.M.; Voiles, L.; Lupov, I.P.; Pelloso, D.; Sinn, A.L.; Pollok, K.E.; de Lumen, B.O.; Li, F.; Blum, J.S.; Srivastava, S.; Robertson, M.J. Soypeptide lunasin in cytokine immunotherapy for lymphoma. Cancer Immunol. Immunother., 2014, 63(3), 283-295.
[http://dx.doi.org/10.1007/s00262-013-1513-8] [PMID: 24363024]
[153]
Bachala, D.; El-Refai, N.; Greenfield, E.; Aminoshariae, A.; Mickel, A. The effect of lunasin on receptor activator of nuclear factor Kappa-B ligand-mediated osteoclast formation from RAW 264.7 cells. J. Endod., 2018, 44(6), 997-999.
[http://dx.doi.org/10.1016/j.joen.2018.02.023] [PMID: 29680727]
[154]
Nguyen, H.N.; Ahn, Y.J.; Medina, E.A.; Asmis, R. Dietary 23-hydroxy ursolic acid protects against atherosclerosis and obesity by preventing dyslipidemia-induced monocyte priming and dysfunction. Atherosclerosis, 2018, 275, 333-341.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.882] [PMID: 30015296]
[155]
Springer, M.; Moco, S. Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients, 2019, 11(1), E143.
[http://dx.doi.org/10.3390/nu11010143] [PMID: 30641865]
[156]
Hou, C.Y.; Tain, Y.L.; Yu, H.R.; Huang, L.T. The Effects of resveratrol in the treatment of metabolic syndrome. Int. J. Mol. Sci., 2019, 20(3), E535.
[http://dx.doi.org/10.3390/ijms20030535] [PMID: 30695995]
[157]
Kumar, A.; Rimando, A.M.; Levenson, A.S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann. N. Y. Acad. Sci., 2017, 1403(1), 15-26.
[http://dx.doi.org/10.1111/nyas.13372] [PMID: 28662290]
[158]
Le, N.H.; Kim, C.S.; Park, T.; Park, J.H.; Sung, M.K.; Lee, D.G.; Hong, S.M.; Choe, S.Y.; Goto, T.; Kawada, T.; Yu, R. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm., 2014, 2014, 834294.
[http://dx.doi.org/10.1155/2014/834294] [PMID: 25614714]
[159]
Mielczarek-Puta, M; Chrzanowska, A; Otto-Ślusarczyk, D; Graboń, W; Barańczyk-Kuźma, A. [Effect of antioxidants on human primary and metastatic colon cancer cells at hypoxia and normoxia]. Wiadomosci lekarskie (Warsaw, Poland : 1960)., 2017, 70(5), 946-952..
[160]
Poudel, B.; Lim, S.W.; Ki, H.H.; Nepali, S.; Lee, Y.M.; Kim, D.K. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int. J. Mol. Med., 2014, 34(5), 1401-1408.
[http://dx.doi.org/10.3892/ijmm.2014.1921] [PMID: 25189808]
[161]
Li, C.; Lu, Y.; Du, S.; Li, S.; Zhang, Y.; Liu, F.; Chen, Y.; Weng, D.; Chen, J. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics, 2017, 7(17), 4255-4275.
[http://dx.doi.org/10.7150/thno.20270] [PMID: 29158824]
[162]
Li, S.; Cheng, B.; Hou, L.; Huang, L.; Cui, Y.; Xu, D.; Shen, X.; Li, S. Dioscin inhibits colon cancer cells’ growth by reactive oxygen species-mediated mitochondrial dysfunction and p38 and JNK pathways. Anticancer Drugs, 2018, 29(3), 234-242.
[http://dx.doi.org/10.1097/CAD.0000000000000590] [PMID: 29389802]
[163]
Lin, Y.C.; Lin, Y.C.; Kuo, W.W.; Shen, C.Y.; Cheng, Y.C.; Lin, Y.M.; Chang, R.L.; Padma, V.V.; Huang, C.Y.; Huang, C.Y. Platycodin D reverses pathological cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Am. J. Chin. Med., 2018, 46(3), 537-549.
[http://dx.doi.org/10.1142/S0192415X18500271] [PMID: 29595072]
[164]
Zeng, C.C.; Zhang, C.; Yao, J.H.; Lai, S.H.; Han, B.J.; Li, W.; Tang, B.; Wan, D.; Liu, Y.J. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 168, 199-205.
[http://dx.doi.org/10.1016/j.saa.2016.06.005] [PMID: 27294548]
[165]
Gu, M.; Luo, L.; Fang, K. Crocin inhibits obesity via AMPK-dependent inhibition of adipocyte differentiation and promotion of lipolysis. Biosci. Trends, 2018, 12(6), 587-594.
[http://dx.doi.org/10.5582/bst.2018.01240] [PMID: 30674760]
[166]
Inoue, E.; Shimizu, Y.; Masui, R.; Hayakawa, T.; Tsubonoya, T.; Hori, S.; Sudoh, K. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. J. Nat. Med., 2018, 72(1), 274-279.
[http://dx.doi.org/10.1007/s11418-017-1150-1] [PMID: 29147836]
[167]
Lien, L.M.; Lin, K.H.; Huang, L.T.; Tseng, M.F.; Chiu, H.C.; Chen, R.J.; Lu, W.J. Licochalcone a prevents platelet activation and thrombus formation through the inhibition of PLCγ2-PKC, Akt, and MAPK Pathways. Int. J. Mol. Sci., 2017, 18(7), E1500.
[http://dx.doi.org/10.3390/ijms18071500] [PMID: 28704925]
[168]
Huang, W.C.; Su, H.H.; Fang, L.W.; Wu, S.J.; Liou, C.J.; Licochalcone, A. Inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells, 2019, 8(3), E218.
[http://dx.doi.org/10.3390/cells8030218] [PMID: 30841634]
[169]
Pothuraju, R.; Sharma, R.K.; Chagalamarri, J.; Jangra, S.; Kumar Kavadi, P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric., 2014, 94(5), 834-840.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[170]
Stracquadanio, M.; Ciotta, L.; Palumbo, M.A. Effects of myo-inositol, gymnemic acid, and L-methylfolate in polycystic ovary syndrome patients. Gynecol. Endocrinol., 2018, 34(6), 495-501..
[171]
Zuñiga, L.Y.; González-Ortiz, M.; Martínez-Abundis, E. Effect of gymnema sylvestre administration on metabolic syndrome, insulin sensitivity, and insulin secretion. J. Med. Food, 2017, 20(8), 750-754.
[http://dx.doi.org/10.1089/jmf.2017.0001] [PMID: 28459647]
[172]
Xu, J.H.; Liu, X.Z.; Pan, W.; Zou, D.J. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol. Med. Rep., 2017, 15(5), 2765-2787.
[http://dx.doi.org/10.3892/mmr.2017.6321] [PMID: 28447763]
[173]
Xu, Z.; Feng, W.; Shen, Q.; Yu, N.; Yu, K.; Wang, S.; Chen, Z.; Shioda, S.; Guo, Y. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation. Aging Dis., 2017, 8(6), 760-777.
[http://dx.doi.org/10.14336/AD.2016.0620] [PMID: 29344415]
[174]
Wang, Y; Zhang, S Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed pharmacother, 2018, 103, 1287-1293.
[175]
Zhao, Y.; Sedighi, R.; Wang, P.; Chen, H.; Zhu, Y.; Sang, S. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem., 2015, 63(19), 4843-4852.
[http://dx.doi.org/10.1021/acs.jafc.5b01246] [PMID: 25929334]
[176]
Ghasemzadeh Rahbardar, M; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed pharmacother, 2017, 86, 441-449.
[177]
Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients, 2016, 8(11), E731.
[http://dx.doi.org/10.3390/nu8110731] [PMID: 27869665]
[178]
Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol., 2016, 173(15), 2369-2389.
[http://dx.doi.org/10.1111/bph.13514] [PMID: 27174467]
[179]
Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules, 2016, 21(8), E966.
[http://dx.doi.org/10.3390/molecules21080966] [PMID: 27455231]
[180]
Dai, N.; Ye, R.; He, Q.; Guo, P.; Chen, H.; Zhang, Q. Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol. Rep., 2018, 40(6), 3235-3248.
[PMID: 30272354]
[181]
Güler, S.; Zik, B. Effects of capsaicin on ovarian granulosa cell proliferation and apoptosis. Cell Tissue Res., 2018, 372(3), 603-609.
[http://dx.doi.org/10.1007/s00441-018-2803-4] [PMID: 29455258]
[182]
Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric., 2014, 94(14), 2972-2977.
[http://dx.doi.org/10.1002/jsfa.6642] [PMID: 24615565]
[183]
Hwang, Y.H.; Kim, T.; Kim, R.; Ha, H. The natural product 6-gingerol inhibits inflammation-associated osteoclast differentiation via reduction of prostaglandin E2 levels. Int. J. Mol. Sci., 2018, 19(7), E2068.
[http://dx.doi.org/10.3390/ijms19072068] [PMID: 30013004]
[184]
Wang, C.; Shi, C.; Yang, X.; Yang, M.; Sun, H.; Wang, C. Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur. J. Pharmacol., 2014, 744, 52-58.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.043] [PMID: 25300680]
[185]
Venkatesha, S.H.; Moudgil, K.D. Celastrol and its role in controlling chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 267-289.
[http://dx.doi.org/10.1007/978-3-319-41334-1_12] [PMID: 27671821]
[186]
Behl, T.; Kotwani, A. Omega-3 fatty acids in prevention of diabetic retinopathy. J. Pharm. Pharmacol., 2017, 69(8), 946-954.
[http://dx.doi.org/10.1111/jphp.12744] [PMID: 28481011]
[187]
Tejada, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Omega-3 fatty acids in the management of epilepsy. Curr. Top. Med. Chem., 2016, 16(17), 1897-1905.
[http://dx.doi.org/10.2174/1568026616666160204123107] [PMID: 26845549]