Current and Future Therapeutic Targets: A Review on Treating Head and Neck Squamous Cell Carcinoma

Page: [386 - 400] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Head and neck squamous cell carcinoma (HNSCC) continues to be a global public health burden even after a tremendous development in its treatment. It is a heterogeneous cancer of upper aero-digestive tract. The contemporary strategy to treat cancer is the use of anticancer drugs against proteins possessing abnormal expression. Targeted chemotherapy was found successful in HNSCC, but, there is still a stagnant improvement in the survival rates and high recurrence rates due to undesirable chemotherapy reactions, non-specificity of drugs, resistance against drugs and drug toxicity on non-cancerous tissues and cells. Various extensive studies lead to the identification of drug targets capable to treat HNSCC effectively. The current review article gives an insight into these promising anticancer targets along with knowledge of drugs under various phases of development. In addition, new potential targets that are not yet explored against HNSCC are also described. We believe that exploring and developing drugs against these targets might prove beneficial in treating HNSCC.

Keywords: PIK3CA, MEK1, RAC1, S6K2, EGFR, drug target, HNSCC.

Graphical Abstract

[1]
Cohen, E.E.W.; Bell, R.B.; Bifulco, C.B.; Burtness, B.; Gillison, M.L.; Harrington, K.J.; Le, Q.T.; Lee, N.Y.; Leidner, R.; Lewis, R.L.; Licitra, L.; Mehanna, H.; Mell, L.K.; Raben, A.; Sikora, A.G.; Uppaluri, R.; Whitworth, F.; Zandberg, D.P.; Ferris, R.L. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J. Immunother. Cancer, 2019, 7(1), 184.
[http://dx.doi.org/10.1186/s40425-019-0662-5] [PMID: 31307547]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Suh, Y.; Amelio, I.; Guerrero Urbano, T.; Tavassoli, M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell Death Dis., 2014, 5(1), e1018-e12.
[http://dx.doi.org/10.1038/cddis.2013.548] [PMID: 24457962]
[4]
Alsahafi, E.; Begg, K.; Amelio, I.; Raulf, N.; Lucarelli, P.; Sauter, T.; Tavassoli, M. Clinical Update on Head and Neck Cancer: Molecular Biology and Ongoing Challenges. Cell Death and Disease, 2019,
[5]
Kozakiewicz, P.; Grzybowska-Szatkowska, L. Application of Molecular Targeted Therapies in the Treatment of Head and Neck Squamous Cell Carcinoma. Oncology Letters, 2018, , 7497-7505.
[6]
Gougis, P.; Moreau Bachelard, C.; Kamal, M.; Gan, H.K.; Borcoman, E.; Torossian, N.; Bièche, I.; Le Tourneau, C. Clinical Development of Molecular Targeted Therapy in Head and Neck Squamous Cell Carcinoma. JNCI Cancer Spectr, 2019, 3(4), pkz055.
[http://dx.doi.org/10.1093/jncics/pkz055] [PMID: 32337482]
[7]
Sacco, A.G.; Worden, F.P. Molecularly targeted therapy for the treatment of head and neck cancer: a review of the ErbB family inhibitors. OncoTargets Ther., 2016, 9, 1927-1943.
[http://dx.doi.org/10.2147/OTT.S93720\rott-9-1927] [PMID: 27110122]
[8]
Morgan, H.E.; Sher, D.J. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck, 2020, 5(1), 1.
[http://dx.doi.org/10.1186/s41199-019-0046-z] [PMID: 31938572]
[9]
Nutting, C. Radiotherapy in head and neck cancer management: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol., 2016, 130(S2), S66-S67.
[http://dx.doi.org/10.1017/S0022215116000463] [PMID: 27841119]
[10]
Hegde, J.V.; Demanes, D.J.; Veruttipong, D.; Chin, R.K.; Park, S.J.; Kamrava, M. Head and neck cancer reirradiation with interstitial high-dose-rate brachytherapy. Head Neck, 2018, 40(7), 1524-1533.
[http://dx.doi.org/10.1002/hed.25137] [PMID: 29573121]
[11]
Peiffert, D.; Coche-Dequéant, B.; Lapeyre, M.; Renard, S. Brachytherapy for Head and Neck Cancers. Cancer/Radiotherapie, 2018, , 359-366.
[12]
Nishio, M. Radiotherapy for head and neck cancer. Nippon Igaku Hoshasen Gakkai Zasshi, 2004, 64(7), 379-386.
[http://dx.doi.org/10.1055/s-0030-1255330] [PMID: 15688743]
[15]
Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: a retrospective evaluation. Oncol. Rep., 2013, 29(4), 1285-1292.
[http://dx.doi.org/10.3892/or.2013.2279] [PMID: 23404427]
[16]
Brands, R.C.; De Donno, F.; Knierim, M.L.; Steinacker, V.; Hartmann, S.; Seher, A.; Kübler, A.C.; Müller-Richter, U.D.A. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol. Lett., 2019, 18(3), 2220-2231.
[http://dx.doi.org/10.3892/ol.2019.10541] [PMID: 31452723]
[17]
Banerji, U.; Sain, N.; Sharp, S.Y.; Valenti, M.; Asad, Y.; Ruddle, R.; Raynaud, F.; Walton, M.; Eccles, S.A.; Judson, I. In vitro evaluation of the growth inhibition and apoptosis effect of mifepristone (RU486) in human ishikawa and HEC1A endometrial cancer cell lines. Cancer Chemother. Pharmacol., 2008, 62(3), 769-778.
[http://dx.doi.org/10.1007/s00280-007-0662-x] [PMID: 18193424]
[18]
Fiebiger, W.; Olszewski, U.; Ulsperger, E.; Geissler, K.; Hamilton, G. In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell lines. Clin. Transl. Oncol., 2011, 13(1), 43-49.
[http://dx.doi.org/10.1007/s12094-011-0615-z] [PMID: 21239354]
[19]
Cheng, Y.J.; Wu, R.; Cheng, M.L.; Du, J.; Hu, X.W.; Yu, L.; Zhao, X.K.; Yao, Y.M.; Long, Q.Z.; Zhu, L.L.; Zhu, J.J.; Huang, N.W.; Liu, H.J.; Hu, Y.X.; Wan, F. Carboplatin-induced hematotoxicity among patients with non-small cell lung cancer: Analysis on clinical adverse events and drug-gene interactions. Oncotarget, 2017, 8(19), 32228-32236.
[http://dx.doi.org/10.18632/oncotarget.12951] [PMID: 27802181]
[20]
Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol., 2020, 11, 343.
[http://dx.doi.org/10.3389/fphar.2020.00343] [PMID: 32265714]
[21]
Yamano, Y.; Uzawa, K.; Saito, K.; Nakashima, D.; Kasamatsu, A.; Koike, H.; Kouzu, Y.; Shinozuka, K.; Nakatani, K.; Negoro, K.; Fujita, S.; Tanzawa, H. Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma. Int. J. Cancer, 2010, 126(2), 437-449.
[http://dx.doi.org/10.1002/ijc.24704] [PMID: 19569180]
[22]
Chang, W.M.; Chang, Y.C.; Yang, Y.C.; Lin, S.K.; Chang, P.M.H.; Hsiao, M. AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 245.
[http://dx.doi.org/10.1186/s13046-019-1256-2] [PMID: 31182137]
[23]
Yang, Z.; Liao, J.; Carter-Cooper, B.A.; Lapidus, R.G.; Cullen, K.J.; Dan, H. Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the SRC/ETS-1 signaling pathway. BMC Cancer, 2019, 19(1), 485.
[http://dx.doi.org/10.1186/s12885-019-5664-7] [PMID: 31118072]
[24]
Joshi, S.; Durden, D. L. combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system. Journal of Oncology, 2019.
[25]
Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front. Pharmacol., 2018, 9, 185.
[http://dx.doi.org/10.3389/fphar.2018.00185] [PMID: 29556198]
[26]
Disorders of the Head and Neck | Schwartz’s Principles of Surgery, 10e | AccessSurgery | McGraw-Hill Medical, https://accesssurgery.mhmedical.com/content.aspx?sectionid=59610860&bookid=980
[27]
Moskovitz, J.; Moy, J.; Ferris, R.L. Immunotherapy for head and neck squamous cell carcinoma. Curr. Oncol. Rep., 2018, 20(2), 22.
[http://dx.doi.org/10.1007/s11912-018-0654-5] [PMID: 29502288]
[28]
Micaily, I.; Johnson, J.; Argiris, A. An update on angiogenesis targeting in head and neck squamous cell carcinoma. Cancers Head Neck, 2020, 5(1), 5.
[http://dx.doi.org/10.1186/s41199-020-00051-9] [PMID: 32280512]
[29]
Iglesias-Bartolome, R.; Martin, D.; Gutkind, J.S. Exploiting the head and neck cancer oncogenome: widespread PI3K-mTOR pathway alterations and novel molecular targets. Cancer Discov., 2013, 3(7), 722-725.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0239] [PMID: 23847349]
[30]
Takeda, M.; Nakagawa, K. First-and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? International Journal of Molecular Sciences, 2019,
[31]
Ratushny, V.; Astsaturov, I.; Burtness, B.A.; Golemis, E.A.; Silverman, J.S. Targeting EGFR resistance networks in head and neck cancer. Cell. Signal., 2009, 21(8), 1255-1268.
[http://dx.doi.org/10.1016/j.cellsig.2009.02.021] [PMID: 19258037]
[32]
Pollock, N. I.; Grandis, J. R. HER2 as a Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 526-533.
[33]
Schroeder, R.L.; Stevens, C.L.; Sridhar, J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules, 2014, 19(9), 15196-15212.
[http://dx.doi.org/10.3390/molecules190915196] [PMID: 25251190]
[34]
Ausoni, S.; Boscolo-Rizzo, P.; Singh, B.; Da Mosto, M.C.; Spinato, G.; Tirelli, G.; Spinato, R.; Azzarello, G. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev., 2016, 35(3), 413-426.
[http://dx.doi.org/10.1007/s10555-016-9625-1] [PMID: 27194534]
[35]
Trivedi, S.; Srivastava, R.M.; Concha-Benavente, F.; Ferrone, S.; Garcia-Bates, T.M.; Li, J.; Ferris, R.L. Anti-EGFR targeted monoclonal antibody isotype influences antitumor cellular immunity in head and neck cancer patients. Clin. Cancer Res., 2016, 22(21), 5229-5237.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2971] [PMID: 27217441]
[36]
Cripps, C.; Winquist, E.; Devries, M.C.; Stys-Norman, D.; Gilbert, R. Head and neck cancer disease site group. Epidermal growth factor receptor targeted therapy in stages III and IV head and neck cancer. Curr. Oncol., 2010, 17(3), 37-48.
[http://dx.doi.org/10.3747/co.v17i3.520] [PMID: 20567625]
[37]
Wen, Y.; Grandis, J.R. Emerging drugs for head and neck cancer. Expert Opin. Emerg. Drugs, 2015, 20(2), 313-329.
[http://dx.doi.org/10.1517/14728214.2015.1031653] [PMID: 25826749]
[38]
Cohen, R.B. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat. Rev., 2014, 40(4), 567-577.
[http://dx.doi.org/10.1016/j.ctrv.2013.10.002] [PMID: 24216225]
[39]
Economopoulou, P.; Perisanidis, C.; Giotakis, E.I.; Psyrri, A. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): anti-tumor immunity and clinical applications. Ann. Transl. Med., 2016, 4(9), 173.
[http://dx.doi.org/10.21037/atm.2016.03.34] [PMID: 27275486]
[40]
Freeman, D.J.; Bush, T.; Ogbagabriel, S.; Belmontes, B.; Juan, T.; Plewa, C.; Van, G.; Johnson, C.; Radinsky, R. Activity of panitumumab alone or with chemotherapy in non-small cell lung carcinoma cell lines expressing mutant epidermal growth factor receptor. Mol. Cancer Ther., 2009, 8(6), 1536-1546.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0978] [PMID: 19509246]
[41]
Chong, D.Q.; Toh, X.Y.; Ho, I.A.W.; Sia, K.C.; Newman, J.P.; Yulyana, Y.; Ng, W.H.; Lai, S.H.; Ho, M.M.F.; Dinesh, N.; Tham, C.K.; Lam, P.Y. Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status. BMC Cancer, 2015, 15(1), 255.
[http://dx.doi.org/10.1186/s12885-015-1191-3] [PMID: 25886314]
[42]
Crombet Ramos, T.; Mestre Fernández, B.; Mazorra Herrera, Z.; Iznaga Escobar, N.E. Nimotuzumab for Patients With Inoperable Cancer of the Head and Neck. Front. Oncol., 2020, 10, 817.
[http://dx.doi.org/10.3389/fonc.2020.00817] [PMID: 32537431]
[43]
Srinivas, K.S.; Sundaram, R.; Divyambika, C.V.; Chaudhari, S. Nimotuzumab with intensity-modulated radiation therapy in unresectable and platinum-ineligible locally advanced head-and-neck cancer. South Asian J. Cancer, 2020, 9(1), 43-46.
[http://dx.doi.org/10.4103/sajc.sajc_29_19] [PMID: 31956621]
[44]
Martinez-Useros, J.; Garcia-Foncillas, J. The challenge of blocking a wider family members of EGFR against head and neck squamous cell carcinomas. Oral Oncol., 2015, 51(5), 423-430.
[http://dx.doi.org/10.1016/j.oraloncology.2015.02.092] [PMID: 25753560]
[45]
Lawrence, M.S.; Sougnez, C.; Lichtenstein, L.; Cibulskis, K.; Lander, E.; Gabriel, S.B.; Getz, G.; Ally, A.; Balasundaram, M.; Birol, I. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 2015, 517(7536), 576-582.
[http://dx.doi.org/10.1038/nature14129] [PMID: 25631445]
[46]
Wang, F.; Meng, F.; Wong, S.C.C.; Cho, W.C.S.; Yang, S.; Chan, L.W.C. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther. Adv. Respir. Dis., 2020, 14, 1753466620915156.
[http://dx.doi.org/10.1177/1753466620915156] [PMID: 32552611]
[47]
Pedersen, M.W.; Pedersen, N.; Ottesen, L.H.; Poulsen, H.S. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br. J. Cancer, 2005, 93(8), 915-923.
[http://dx.doi.org/10.1038/sj.bjc.6602793] [PMID: 16189524]
[48]
Moasser, M.M.; Basso, A.; Averbuch, S.D.; Rosen, N. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res., 2001, 61(19), 7184-7188.
[PMID: 11585753]
[49]
Mallmann-Gottschalk, N.; Sax, Y.; Kimmig, R.; Lang, S.; Brandau, S. EGFR-specific tyrosine kinase inhibitor modifies nk cell-mediated antitumoral activity against ovarian cancer cells. Int. J. Mol. Sci., 2019, 20(19), E4693.
[http://dx.doi.org/10.3390/ijms20194693] [PMID: 31546690]
[50]
Li, T.; Ling, Y-H.; Goldman, I.D.; Perez-Soler, R. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin. Cancer Res., 2007, 13(11), 3413-3422.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2923] [PMID: 17545550]
[51]
Kobayashi, Y.; Fujino, T.; Nishino, M.; Koga, T.; Chiba, M.; Sesumi, Y.; Ohara, S.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. EGFR T790M and C797S mutations as mechanisms of acquired resistance to dacomitinib. J. Thorac. Oncol., 2018, 13(5), 727-731.
[http://dx.doi.org/10.1016/j.jtho.2018.01.009] [PMID: 29410323]
[52]
Yonesaka, K.; Tanaka, K.; Kitano, M.; Kawakami, H.; Hayashi, H.; Takeda, M.; Sakai, K.; Nishio, K.; Doi, K.; Nakagawa, K. Aberrant HER3 ligand heregulin-expressing head and neck squamous cell carcinoma is resistant to anti-EGFR antibody cetuximab, but not second-generation EGFR-TKI. Oncogenesis, 2019, 8(10), 54.
[http://dx.doi.org/10.1038/s41389-019-0164-9] [PMID: 31570699]
[53]
Vengoji, R.; Macha, M.A.; Nimmakayala, R.K.; Rachagani, S.; Siddiqui, J.A.; Mallya, K.; Gorantla, S.; Jain, M.; Ponnusamy, M.P.; Batra, S.K.; Shonka, N. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 266.
[http://dx.doi.org/10.1186/s13046-019-1264-2] [PMID: 31215502]
[54]
Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF - Madame Curie Bioscience Database - NCBI Bookshelf, https://www.ncbi.nlm.nih.gov/books/NBK6482/
[55]
Brands, R.C.; Knierim, L.M.; De Donno, F.; Steinacker, V.; Hartmann, S.; Seher, A.; Kübler, A.C.; Müller-Richter, U.D.A. Targeting VEGFR and FGFR in head and neck squamous cell carcinoma in vitro. Oncol. Rep., 2017, 38(3), 1877-1885.
[http://dx.doi.org/10.3892/or.2017.5801] [PMID: 28714017]
[56]
Zhang, C.; Tan, C.; Ding, H.; Xin, T.; Jiang, Y. Selective VEGFR inhibitors for anticancer therapeutics in clinical use and clinical trials. Curr. Pharm. Des., 2012, 18(20), 2921-2935.
[http://dx.doi.org/10.2174/138161212800672732] [PMID: 22571661]
[57]
Hao, Z.; Sadek, I. Sunitinib: The Antiangiogenic Effects and Beyond. OncoTargets and Therapy, 2016, , 5495-5505.
[58]
Fritz, J. M.; Lenardo, M. J. Development of Immune Checkpoint Therapy for Cancer. The Journal of experimental medicine, 2019, , 1244-1254.
[59]
Huang, P.Y.; Guo, S.S.; Zhang, Y.; Lu, J.B.; Chen, Q.Y.; Tang, L.Q.; Zhang, L.; Liu, L.T.; Zhang, L.; Mai, H.Q. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7(11), 13060-13068.
[http://dx.doi.org/10.18632/oncotarget.7421] [PMID: 26918337]
[60]
Salvi, S.; Fontana, V.; Boccardo, S.; Merlo, D.F.; Margallo, E.; Laurent, S.; Morabito, A.; Rijavec, E.; Dal Bello, M.G.; Mora, M.; Ratto, G.B.; Grossi, F.; Truini, M.; Pistillo, M.P. Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol. Immunother., 2012, 61(9), 1463-1472.
[http://dx.doi.org/10.1007/s00262-012-1211-y] [PMID: 22318401]
[61]
Ferris, R.L.; Blumenschein, G., Jr; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; Worden, F.; Saba, N.F.; Iglesias Docampo, L.C.; Haddad, R.; Rordorf, T.; Kiyota, N.; Tahara, M.; Monga, M.; Lynch, M.; Geese, W.J.; Kopit, J.; Shaw, J.W.; Gillison, M.L. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2016, 375(19), 1856-1867.
[http://dx.doi.org/10.1056/NEJMoa1602252] [PMID: 27718784]
[62]
Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol., 2017, 18(12), e731-e741.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1] [PMID: 29208439]
[63]
Ho, W.J.; Mehra, R. Pembrolizumab for the treatment of head and neck squamous cell cancer. Expert Opin. Biol. Ther., 2019, 19(9), 879-885.
[http://dx.doi.org/10.1080/14712598.2019.1644315] [PMID: 31317798]
[64]
Kalmuk, J.; Puchalla, J.; Feng, G.; Giri, A.; Kaczmar, J. Pembrolizumab-induced Hemophagocytic Lymphohistiocytosis: an immunotherapeutic challenge. Cancers Head Neck, 2020, 5(1), 3.
[http://dx.doi.org/10.1186/s41199-020-0050-3] [PMID: 32025343]
[65]
Agrawal, N.; Frederick, M. J.; Pickering, C. R.; Bettegowda, C.; Chang, K.; Li, R. J.; Fakhry, C.; Xie, T.-X.; Zhang, J.; Wang, J. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science (80-. ), 2011, 333(6064), 1154-1157.
[66]
Gingerich, M.A.; Smith, J.D.; Michmerhuizen, N.L.; Ludwig, M.; Devenport, S.; Matovina, C.; Brenner, C.; Chinn, S.B. Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low-risk, nontraditional patients. Head Neck, 2018, 40(5), 943-954.
[http://dx.doi.org/10.1002/hed.25057] [PMID: 29427520]
[67]
Zhou, G.; Liu, Z.; Myers, J.N. TP53 Mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J. Cell. Biochem., 2016, 117(12), 2682-2692.
[http://dx.doi.org/10.1002/jcb.25592] [PMID: 27166782]
[68]
Blandino, G.; Di Agostino, S. New Therapeutic Strategies to Treat Human Cancers Expressing Mutant P53 Proteins. J. Exper. Clin. Cancer Res., 2018,
[69]
Nakamura, M.; Obata, T.; Daikoku, T.; Fujiwara, H. The Association and Significance of P53 in Gynecologic Cancers: The Potential of Targeted Therapy. Int. J. Mol. Sci., 2019.
[70]
Corchado-Cobos, R.; García-Sancha, N.; González-Sarmiento, R.; Pérez-Losada, J.; Cañueto, J. Cutaneous Squamous Cell Carcinoma: From Biology to Therapy. Int. J. Mol. Sci., 2020.
[71]
Marquard, F. E.; Jücker, M. PI3K/AKT/MTOR Signaling as a Molecular Target in Head and Neck Cancer. Biochem. Pharmacol., 2020.
[72]
García-Escudero, R.; Segrelles, C.; Dueñas, M.; Pombo, M.; Ballestín, C.; Alonso-Riaño, M.; Nenclares, P.; Álvarez-Rodríguez, R.; Sánchez-Aniceto, G.; Ruíz-Alonso, A.; López-Cedrún, J.L.; Paramio, J.M.; Lorz, C. Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway. Oral Oncol., 2018, 79, 55-63.
[http://dx.doi.org/10.1016/j.oraloncology.2018.02.014] [PMID: 29598951]
[73]
Burger, M.T.; Pecchi, S.; Wagman, A.; Ni, Z-J.; Knapp, M.; Hendrickson, T.; Atallah, G.; Pfister, K.; Zhang, Y.; Bartulis, S.; Frazier, K.; Ng, S.; Smith, A.; Verhagen, J.; Haznedar, J.; Huh, K.; Iwanowicz, E.; Xin, X.; Menezes, D.; Merritt, H.; Lee, I.; Wiesmann, M.; Kaufman, S.; Crawford, K.; Chin, M.; Bussiere, D.; Shoemaker, K.; Zaror, I.; Maira, S.M.; Voliva, C.F. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med. Chem. Lett., 2011, 2(10), 774-779.
[http://dx.doi.org/10.1021/ml200156t] [PMID: 24900266]
[74]
Saada-Bouzid, E.; Le Tourneau, C. Beyond EGFR targeting in SCCHN: angiogenesis, PI3K, and other molecular targets.Front. Oncol., 2019, 74.
[75]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[76]
Fritsch, C.; Huang, A.; Chatenay-Rivauday, C.; Schnell, C.; Reddy, A.; Liu, M.; Kauffmann, A.; Guthy, D.; Erdmann, D.; De Pover, A. Characterization of the Novel and Specific PI3Kα Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials; Author Manuscr. Publ. OnlineFirst, 2014.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0865]
[77]
De Felice, F.; Guerrero Urbano, T. New drug development in head and neck squamous cell carcinoma: The PI3-K inhibitors. Oral Oncol., 2017, 67, 119-123.
[http://dx.doi.org/10.1016/j.oraloncology.2017.02.020] [PMID: 28351565]
[78]
Zhang, M.; Jang, H.; Nussinov, R.; Nussinov, R. PI3K inhibitors: review and new strategies. Chem. Sci. (Camb.), 2020, 11(23), 5855-5865.
[http://dx.doi.org/10.1039/D0SC01676D] [PMID: 32953006]
[79]
Juric, D.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.; Iwata, H.; Conte, P.; Mayer, I.; Kaufman, B. Abstract GS3-08: alpelisib + fulvestrant for advanced breast cancer: subgroup analyses from the phase III SOLAR-1 trial. Am. Assoc. Cancer Res. (AACR)., 2019.
[80]
Sridharan, S.; Basu, A. Distinct roles of MTOR targets S6K1 and S6K2 in breast cancer. Int. J. Mol. Sci., 2020.
[81]
Nguyen, J.T.; Ray, C.; Fox, A.L.; Mendonça, D.B.; Kim, J.K.; Krebsbach, P.H. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci. Adv., 2018, 4(5)
[http://dx.doi.org/10.1126/sciadv.aao5838] [PMID: 29750193]
[82]
Karlsson, E.; Magić, I.; Bostner, J.; Dyrager, C.; Lysholm, F.; Hallbeck, A.-L.; Stål, O.; Lundström, P. Revealing different roles of the MTOR-Targets S6K1 and S6K2 in breast cancer by expression profiling and structural analysis. 2015.
[http://dx.doi.org/10.1371/journal.pone.0145013]
[83]
Pardo, O.E.; Seckl, M.J. S6K2: The Neglected S6 Kinase Family Member. Front. Oncol., 2013, 3, 191.
[http://dx.doi.org/10.3389/fonc.2013.00191] [PMID: 23898460]
[84]
Rathinam, R.; Berrier, A.; Alahari, S.K. Role of Rho GTPases and their regulators in cancer progression. Front. Biosci., 2011, 16, 2561-2571.
[http://dx.doi.org/10.2741/3872] [PMID: 21622195]
[85]
Zeng, R.J.; Zheng, C.W.; Gu, J.E.; Zhang, H.X.; Xie, L.; Xu, L.Y.; Li, E.M. RAC1 inhibition reverses cisplatin resistance in esophageal squamous cell carcinoma and induces downregulation of glycolytic enzymes. Mol. Oncol., 2019, 13(9), 2010-2030.
[http://dx.doi.org/10.1002/1878-0261.12548] [PMID: 31314174]
[86]
Del Mar Maldonado, M.; Dharmawardhane, S. Targeting rac and Cdc42 GTPases in cancer. 2018.
[87]
Hampsch, R.A.; Shee, K.; Bates, D.; Lewis, L.D.; Désiré, L.; Leblond, B.; Demidenko, E.; Stefan, K.; Huang, Y.H.; Miller, T.W. Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget, 2017, 8(13), 21806-21817.
[http://dx.doi.org/10.18632/oncotarget.15586] [PMID: 28423521]
[88]
García-Foncillas, J.; Sunakawa, Y.; Aderka, D.; Wainberg, Z.; Ronga, P.; Witzler, P.; Stintzing, S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front. Oncol., 2019, 849.
[89]
Stebbing, J.; Vorgias, C.E. Protein kinases as targets for cancer treatment. 2007, 8, 1005-1016.
[90]
Devaraja, K. Current prospects of molecular therapeutics in head and neck squamous cell carcinoma. Pharma. Med., 2019, 269-289.
[91]
Roskoski, R. Properties of FDA-Approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol. Res., 2020.
[92]
Kumar, D.; Kandl, C.; Hamilton, C.D.; Shnayder, Y.; Tsue, T.T.; Kakarala, K.; Ledgerwood, L.; Sun, X.S.; Huang, H.J.; Girod, D.; Thomas, S.M. Mitigation of tumor-associated fibroblast-facilitated head and neck cancer progression with anti-hepatocyte growth factor antibody ficlatuzumab. JAMA Otolaryngol. Head Neck Surg., 2015, 141(12), 1133-1139.
[http://dx.doi.org/10.1001/jamaoto.2015.2381] [PMID: 26540318]