Abstract
Background: Interleukin-12 receptor (IL12R) is a type I cytokine receptor that can
promote hematopoiesis and regulate innate and adaptive immunity. It binds with the IL12 ligand,
which activates the IL-12 signaling pathway that triggers hematopoietic progenitor cell
proliferation and differentiation process. The structure of IL12:IL12R complex is not known.
Objective: The present work describes a de novo computational method for rational protein
designing to elucidate the structure of IL12:IL12R complex.
Methods: Homology modeling, docking, and MD simulation methods were used to design mimics
of the interaction of IL12 and IL12R.
RResults: 3D structure prediction and validation confirm the accurate structure of IL12R protein that
contains immunoglobin domain, fibronectin type three domain, cytokine-binding domain, and
WSXWS motif. Molecular docking and MD simulation revealed that IL12R bound tightly with
IL12 ligand at their interface. The estimated binding energy of the docked complex was -26.7
kcal/mol, and the interface area was 281.4 Å2. Hotspot prediction suggested that ARG34, SER58,
GLU61, CYS62, LEU63, SER73, ASP142, GLN146, LYS168, THR169 ARG181, ARG183, ARG189, and
TYR193 residues in IL12 ligand interacted with SER175, ALA176, CYS177, PRO178, ALA179, ALA180,
GLU181, GLU182, ALA192, VAL193, HIS194, ARG208, TYR246, GLN289, ASP290, ARG291, TYR292,
TYR293 and SER294 residues in IL12 receptor.
Conclusion: The results of the study provides a simulated molecular structure of IL12:IL12R
complex that could offer a promising target complex to substantiate IL12 based drug-designing
approaches.
Keywords:
IL12:IL12R complex, homology modeling, molecular docking, molecular dynamics simulation.
Graphical Abstract
[11]
Martínez-Barricarte, R.; Markle, J.G.; Ma, C.S.; Deenick, E.K.; Ramírez-Alejo, N.; Mele, F.; Latorre, D.; Mahdaviani, S.A.; Aytekin, C.; Mansouri, D.; Bryant, V.L.; Jabot-Hanin, F.; Deswarte, C.; Nieto-Patlán, A.; Surace, L.; Kerner, G.; Itan, Y.; Jovic, S.; Avery, D.T.; Wong, N.; Rao, G.; Patin, E.; Okada, S.; Bigio, B.; Boisson, B.; Rapaport, F.; Seeleuthner, Y.; Schmidt, M.; Ikinciogullari, A.; Dogu, F.; Tanir, G.; Tabarsi, P.; Bloursaz, M.R.; Joseph, J.K.; Heer, A.; Kong, X.F.; Migaud, M.; Lazarov, T.; Geissmann, F.; Fleckenstein, B.; Arlehamn, C.L.; Sette, A.; Puel, A.; Emile, J.F.; van de Vosse, E.; Quintana-Murci, L.; Di Santo, J.P.; Abel, L.; Boisson-Dupuis, S.; Bustamante, J.; Tangye, S.G.; Sallusto, F.; Casanova, J.L. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23.
Sci. Immunol., 2018,
3(30)
[
http://dx.doi.org/10.1126/sciimmunol.aau6759] [PMID:
30578351]
[24]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography, 2002, 40, 82-92.
[33]
Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; O’Mahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β and TNF-α Receptors, functions, and roles in diseases.
J. Allergy Clin. Immunol., 2016,
138(4), 984-1010.
[
http://dx.doi.org/10.1016/j.jaci.2016.06.033] [PMID:
27577879]