Combinatorial Chemistry & High Throughput Screening

Author(s): Sakshi Singh and Geeta Rai*

DOI: 10.2174/1386207323666201207113745

Structural Insights into the IL12:IL12 Receptor Complex Assembly by Molecular Modeling, Docking, and Molecular Dynamics Simulation

Page: [677 - 688] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Interleukin-12 receptor (IL12R) is a type I cytokine receptor that can promote hematopoiesis and regulate innate and adaptive immunity. It binds with the IL12 ligand, which activates the IL-12 signaling pathway that triggers hematopoietic progenitor cell proliferation and differentiation process. The structure of IL12:IL12R complex is not known.

Objective: The present work describes a de novo computational method for rational protein designing to elucidate the structure of IL12:IL12R complex.

Methods: Homology modeling, docking, and MD simulation methods were used to design mimics of the interaction of IL12 and IL12R.

RResults: 3D structure prediction and validation confirm the accurate structure of IL12R protein that contains immunoglobin domain, fibronectin type three domain, cytokine-binding domain, and WSXWS motif. Molecular docking and MD simulation revealed that IL12R bound tightly with IL12 ligand at their interface. The estimated binding energy of the docked complex was -26.7 kcal/mol, and the interface area was 281.4 Å2. Hotspot prediction suggested that ARG34, SER58, GLU61, CYS62, LEU63, SER73, ASP142, GLN146, LYS168, THR169 ARG181, ARG183, ARG189, and TYR193 residues in IL12 ligand interacted with SER175, ALA176, CYS177, PRO178, ALA179, ALA180, GLU181, GLU182, ALA192, VAL193, HIS194, ARG208, TYR246, GLN289, ASP290, ARG291, TYR292, TYR293 and SER294 residues in IL12 receptor.

Conclusion: The results of the study provides a simulated molecular structure of IL12:IL12R complex that could offer a promising target complex to substantiate IL12 based drug-designing approaches.

Keywords: IL12:IL12R complex, homology modeling, molecular docking, molecular dynamics simulation.

Graphical Abstract

[1]
Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol., 1995, 13, 251-276.
[http://dx.doi.org/10.1146/annurev.iy.13.040195.001343] [PMID: 7612223]
[2]
Gately, M.K.; Renzetti, L.M.; Magram, J.; Stern, A.S.; Adorini, L.; Gubler, U.; Presky, D.H. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol., 1998, 16, 495-521.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.495] [PMID: 9597139]
[3]
Wang, X.; Lupardus, P.; Laporte, S.L.; Garcia, K.C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol., 2009, 27, 29-60.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090616] [PMID: 18817510]
[4]
Bastian, D.; Wu, Y.; Betts, B.C.; Yu, X.Z. The IL-12 Cytokine and Receptor Family in Graft-vs.-Host Disease. Front. Immunol., 2019, 10, 988.
[http://dx.doi.org/10.3389/fimmu.2019.00988] [PMID: 31139181]
[5]
Chang, J.T.; Shevach, E.M.; Segal, B.M. Regulation of interleukin (IL)-12 receptor β2 subunit expression by endogenous IL-12: a critical step in the differentiation of pathogenic autoreactive T cells. J. Exp. Med., 1999, 189(6), 969-978.
[http://dx.doi.org/10.1084/jem.189.6.969] [PMID: 10075980]
[6]
Sogkas, G.; Atschekzei, F.; Schacht, V.; von Falck, C.; Jablonka, A.; Jacobs, R.; Stoll, M.; Witte, T.; Schmidt, R.E. First association of Interleukin 12 Receptor Beta 1 Deficiency with sjögren’s syndrome. Front. Immunol., 2017, 8, 885.
[http://dx.doi.org/10.3389/fimmu.2017.00885] [PMID: 28804486]
[7]
Lasek, W.; Zagozdzon, R. Interleukin 12: Antitumor Activity and Immunotherapeutic Potential in Oncology; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-46906-5]
[8]
Romani, L.; Puccetti, P.; Bistoni, F. Interleukin-12 in infectious diseases. Clin. Microbiol. Rev., 1997, 10(4), 611-636.
[http://dx.doi.org/10.1128/CMR.10.4.611] [PMID: 9336665]
[9]
Hamza, T.; Barnett, J.B.; Li, B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci., 2010, 11(3), 789-806.
[http://dx.doi.org/10.3390/ijms11030789] [PMID: 20479986]
[10]
Liu, J.; Cao, S.; Kim, S.; Chung, E.Y.; Homma, Y.; Guan, X.; Jimenez, V.; Ma, X. Interleukin-12: an update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev., 2005, 1(2), 119-137.
[http://dx.doi.org/10.2174/1573395054065115] [PMID: 21037949]
[11]
Martínez-Barricarte, R.; Markle, J.G.; Ma, C.S.; Deenick, E.K.; Ramírez-Alejo, N.; Mele, F.; Latorre, D.; Mahdaviani, S.A.; Aytekin, C.; Mansouri, D.; Bryant, V.L.; Jabot-Hanin, F.; Deswarte, C.; Nieto-Patlán, A.; Surace, L.; Kerner, G.; Itan, Y.; Jovic, S.; Avery, D.T.; Wong, N.; Rao, G.; Patin, E.; Okada, S.; Bigio, B.; Boisson, B.; Rapaport, F.; Seeleuthner, Y.; Schmidt, M.; Ikinciogullari, A.; Dogu, F.; Tanir, G.; Tabarsi, P.; Bloursaz, M.R.; Joseph, J.K.; Heer, A.; Kong, X.F.; Migaud, M.; Lazarov, T.; Geissmann, F.; Fleckenstein, B.; Arlehamn, C.L.; Sette, A.; Puel, A.; Emile, J.F.; van de Vosse, E.; Quintana-Murci, L.; Di Santo, J.P.; Abel, L.; Boisson-Dupuis, S.; Bustamante, J.; Tangye, S.G.; Sallusto, F.; Casanova, J.L. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci. Immunol., 2018, 3(30)
[http://dx.doi.org/10.1126/sciimmunol.aau6759] [PMID: 30578351]
[12]
Morales-Mantilla, D.E.; King, K.Y. The Role of Interferon-Gamma in Hematopoietic Stem Cell Development, Homeostasis, and Disease. Curr. Stem Cell Rep., 2018, 4(3), 264-271.
[http://dx.doi.org/10.1007/s40778-018-0139-3] [PMID: 30148048]
[13]
Ariga, H.; Shimohakamada, Y.; Nakada, M.; Tokunaga, T.; Kikuchi, T.; Kariyone, A.; Tamura, T.; Takatsu, K. Instruction of naive CD4+ T-cell fate to T-bet expression and T helper 1 development: roles of T-cell receptor-mediated signals. Immunology, 2007, 122(2), 210-221.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02630.x] [PMID: 17490433]
[14]
Yoon, C.; Johnston, S.C.; Tang, J.; Stahl, M.; Tobin, J.F.; Somers, W.S. Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO J., 2000, 19(14), 3530-3541.
[http://dx.doi.org/10.1093/emboj/19.14.3530] [PMID: 10899108]
[15]
Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bairoch, A. UniProtKB/Swiss-Prot. Methods Mol. Biol., 2007, 406, 89-112.
[PMID: 18287689]
[16]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[17]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2016, 54, 1-, 37.
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[18]
Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 2014, 9(6)
[http://dx.doi.org/10.1371/journal.pone.0099368] [PMID: 24911789]
[19]
Spetale, F.E.; Arce, D.; Krsticevic, F.; Bulacio, P.; Tapia, E. Consistent prediction of GO protein localization. Sci. Rep., 2018, 8(1), 7757.
[http://dx.doi.org/10.1038/s41598-018-26041-z] [PMID: 29773825]
[20]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server, The Proteomics Protocols Handbook; Humana Press, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[21]
Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc., 2017, 12(2), 255-278.
[http://dx.doi.org/10.1038/nprot.2016.169] [PMID: 28079879]
[22]
Comeau, S.R.; Vajda, S.; Camacho, C.J. Performance of the first protein docking server ClusPro in CAPRI rounds 3-5. Proteins, 2005, 60(2), 239-244.
[http://dx.doi.org/10.1002/prot.20564] [PMID: 15981265]
[23]
Darnell, S.J.; LeGault, L.; Mitchell, J.C. KFC Server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res., 2008, 36(Web Server issue), W265-W269.
[http://dx.doi.org/10.1093/nar/gkn346] [PMID: 18539611]
[24]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography, 2002, 40, 82-92.
[25]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[26]
Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318.
[http://dx.doi.org/10.1021/acschemneuro.9b00348] [PMID: 31545898]
[27]
Chen, J.; Wang, X.; Pang, L.; Zhang, J.Z.H.; Zhu, T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res., 2019, 47(13), 6618-6631.
[http://dx.doi.org/10.1093/nar/gkz499] [PMID: 31173143]
[28]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[29]
Asamitsu, K.; Hirokawa, T.; Hibi, Y.; Okamoto, T. Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins. PLoS One, 2015, 10(3)
[http://dx.doi.org/10.1371/journal.pone.0119451] [PMID: 25781978]
[30]
Xu, Y.; Kershaw, N.J.; Luo, C.S.; Soo, P.; Pocock, M.J.; Czabotar, P.E.; Hilton, D.J.; Nicola, N.A.; Garrett, T.P.; Zhang, J.G. Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J. Biol. Chem., 2010, 285(28), 21214-21218.
[http://dx.doi.org/10.1074/jbc.C110.129502] [PMID: 20489211]
[31]
Bloch, Y.; Bouchareychas, L.; Merceron, R. Składanowska, K.; Van den Bossche, L.; Detry, S.; Govindarajan, S.; Elewaut, D.; Haerynck, F.; Dullaers, M.; Adamopoulos, I.E.; Savvides, S.N. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1. Immunity, 2018, 48(1), 45-58.e6.
[http://dx.doi.org/10.1016/j.immuni.2017.12.008] [PMID: 29287995]
[32]
Floss, D.M.; Schönberg, M.; Franke, M.; Horstmeier, F.C.; Engelowski, E.; Schneider, A.; Rosenfeldt, E.M.; Scheller, J. IL-6/IL-12 Cytokine Receptor Shuffling of Extra- and Intracellular Domains Reveals Canonical STAT Activation via Synthetic IL-35 and IL-39 Signaling. Sci. Rep., 2017, 7(1), 15172.
[http://dx.doi.org/10.1038/s41598-017-15173-3] [PMID: 29123149]
[33]
Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; O’Mahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β and TNF-α Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2016, 138(4), 984-1010.
[http://dx.doi.org/10.1016/j.jaci.2016.06.033] [PMID: 27577879]
[34]
Zhou, H.X.; Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev., 2018, 118(4), 1691-1741.
[http://dx.doi.org/10.1021/acs.chemrev.7b00305] [PMID: 29319301]
[35]
Pirolli, D.; Sciandra, F.; Bozzi, M.; Giardina, B.; Brancaccio, A.; De Rosa, M.C. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One, 2014, 9(7)
[http://dx.doi.org/10.1371/journal.pone.0103866] [PMID: 25078606]
[36]
Shaw, D.E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Eastwood, M.P.; Bank, J.A.; Jumper, J.M.; Salmon, J.K.; Shan, Y.; Wriggers, W. Atomic-level characterization of the structural dynamics of proteins. Science, 2010, 330(6002), 341-346.
[http://dx.doi.org/10.1126/science.1187409] [PMID: 20947758]
[37]
Dong, Y.W.; Liao, M.L.; Meng, X.L.; Somero, G.N. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc. Natl. Acad. Sci. USA, 2018, 115(6), 1274-1279.
[http://dx.doi.org/10.1073/pnas.1718910115] [PMID: 29358381]
[38]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[39]
LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.; Colf, L.A.; Qi, X.; Heller, N.M.; Keegan, A.D.; Garcia, K.C. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell, 2008, 132(2), 259-272.
[http://dx.doi.org/10.1016/j.cell.2007.12.030] [PMID: 18243101]
[40]
Hamming, O.J.; Kang, L.; Svensson, A.; Karlsen, J.L.; Rahbek-Nielsen, H.; Paludan, S.R.; Hjorth, S.A.; Bondensgaard, K.; Hartmann, R. Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with WSXWS motif is integral part of IL-21R. J. Biol. Chem., 2012, 287(12), 9454-9460.
[http://dx.doi.org/10.1074/jbc.M111.311084] [PMID: 22235133]
[41]
Dagil, R.; Knudsen, M.J.; Olsen, J.G.; O’Shea, C.; Franzmann, M.; Goffin, V.; Teilum, K.; Breinholt, J.; Kragelund, B.B. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor. Structure, 2012, 20(2), 270-282.
[http://dx.doi.org/10.1016/j.str.2011.12.010] [PMID: 22325776]
[42]
Jones, L.L.; Vignali, D.A. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunol. Res., 2011, 51(1), 5-14.
[http://dx.doi.org/10.1007/s12026-011-8209-y] [PMID: 21553332]
[43]
Floss, D.M.; Klöcker, T.; Schröder, J.; Lamertz, L.; Mrotzek, S.; Strobl, B.; Hermanns, H.; Scheller, J. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases. Mol. Biol. Cell, 2016, 27(14), 2301-2316.
[http://dx.doi.org/10.1091/mbc.E14-12-1645] [PMID: 27193299]
[44]
Garnier, P.; Mummery, R.; Forster, M.J.; Mulloy, B.; Gibbs, R.V.; Rider, C.C. The localisation of the heparin binding sites of human and murine interleukin-12 within the carboxyterminal domain of the P40 subunit. Cytokine, 2018, 110, 159-168.
[http://dx.doi.org/10.1016/j.cyto.2018.04.014] [PMID: 29753267]