Combinatorial Chemistry & High Throughput Screening

Author(s): Ozlem Oz*, Ismail Koyuncu and Ataman Gonel

DOI: 10.2174/1386207323666201204143206

A Pilot Study for Investigation of Plasma Amino Acid Profile in Neurofibromatosis Type 1 Patients

Page: [114 - 122] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Neurofibromatosis, also known as Von Recklinghausen disease, is a systemic and progressive genetic disease that primarily affects the skin, eyes, nervous system, and bones. The disease can occur in a variety of ways and can vary in individuals. Metabolomic-based research using blood samples has enabled new diagnostic methods to be used in the diagnosis of various diseases, especially cancer. Among the metabolites, profiling of plasma free amino acids (PFAA) is a promising approach because PFAAs bind all organ systems and play an important role in the metabolism.

Objective: This study aimed to determine the characteristics of PFAA profiles in neurofibromatosis patients and the possibility of using them for early detection and treatment of the disease.

Methods: Patients with a diagnosis of Neurofibromatosis Type I confirmed by genetic analysis and healthy individuals of the same age group without any disease were included in the study. We analysed the nineteen plasma free amino acids (phenylalanine, proline, threonine, arginine, asparagine, cystine, valine, glutamate, tyrosine, serine, glutamine, glycine, tryptophane, leucine, lysine, methionine, isoleucine, aspartate and alanine) from neurofibromatosis Type I patients and control group by liquid chromatography tandem mass spectrometry (LC-MS/MS) in Metabolism Laboratory of Harran University Research and Application Hospital. The results of the plasma free amino acid levels were divided into 3 groups as essential, semi-essential, and non-essential. The differences in amino acid levels between groups were determined.

Results: The levels of eight amino acids (methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate) were significantly altered in patients with neurofibromatosis type 1. In essential amino acids, methionine levels were significantly higher in the patient group than control group. While the levels of arginine and glutamine in semi-essential amino acids were statistically significantly higher in the patient group, a significant decrease was observed in cystine and proline levels compared to the control group's amino acid levels. In the non-essential amino acids group, asparagine, serine and aspartate amino acid levels were significantly higher in the patient group compared to the control group.

Conclusion: The current research predicates that eight amino acids, namely methionine, arginine, cystine, glutamine, proline, asparagine, serine, aspartate can be considered to be valuable biomarkers for neurofibromatosis type I. This present study is the first to build models for neurofibromatosis Type I screening using plasma free amino acids and the amino acid profile will be able to guide the prediction of the complications that may occur during the course of the disease.

Keywords: Neurofibromatosis type 1, plasma amino acid, Liquid chromatography tandem mass spectrometry (LC-MS/MS), methionine, cystine, serine.

Graphical Abstract

[1]
Helfferich, J.; Nijmeijer, R.; Brouwer, O.F.; Boon, M.; Fock, A.; Hoving, E.W.; Meijer, L.; den Dunnen, W.F.; de Bont, E.S. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit. Rev. Oncol. Hematol., 2016, 104, 30-41.
[http://dx.doi.org/10.1016/j.critrevonc.2016.05.008] [PMID: 27263935]
[2]
Conference, N.C.D. National institutes of health consensus development conference. Neurofibromatosis. Conference statement. Arch. Neurol., 1988, 45(5), 575-578.
[http://dx.doi.org/10.1001/archneur.1988.00520290115023] [PMID: 3128965]
[3]
Marchuk, D.A.; Saulino, A.M.; Tavakkol, R.; Swaroop, M.; Wallace, M.R.; Andersen, L.B.; Mitchell, A.L.; Gutmann, D.H.; Boguski, M.; Collins, F.S. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. 1991.
[4]
Viskochil, D. Genetics of neurofibromatosis 1 and the NF1 gene. J. Child Neurol., 2002, 17(8), 562-570.
[http://dx.doi.org/10.1177/088307380201700804] [PMID: 12403554]
[5]
Xu, G.; Lin, B.; Tanaka, K.; Dunn, D.; Wood, D.; Gesteland, R.; White, R.; Weiss, R.; Tamanoi, F.J.C. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell, 1990, 63(4), 835-841.
[6]
Andersen, L.B.; Ballester, R.; Marchuk, D.A.; Chang, E.; Gutmann, D.H.; Saulino, A.M.; Camonis, J.; Wigler, M.; Collins, F.S. A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Mol. Cell. Biol., 1993, 13(1), 487-495.
[http://dx.doi.org/10.1128/MCB.13.1.487] [PMID: 8417346]
[7]
Banerjee, S.; Crouse, N.R.; Emnett, R.J.; Gianino, S.M.; Gutmann, D.H. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 15996-16001.
[http://dx.doi.org/10.1073/pnas.1019012108] [PMID: 21896734]
[8]
Tong, J.J.; Schriner, S.E.; McCleary, D.; Day, B.J.; Wallace, D.C.J.N.g. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster., 2007, 39(4), 476-485.
[http://dx.doi.org/10.1038/ng2004]
[9]
Abramowicz, A.; Gos, M. Neurofibromin - protein structure and cellular functions in the context of neurofibromatosis type I pathogenesis. Postepy Hig. Med. Dosw., 2015, 69, 1331-1348.
[http://dx.doi.org/10.5604/17322693.1185213] [PMID: 26671924]
[10]
Pinna, V.; Lanari, V.; Daniele, P.; Consoli, F.; Agolini, E.; Margiotti, K.; Bottillo, I.; Torrente, I.; Bruselles, A.; Fusilli, C.; Ficcadenti, A.; Bargiacchi, S.; Trevisson, E.; Forzan, M.; Giustini, S.; Leoni, C.; Zampino, G.; Digilio, M.C.; Dallapiccola, B.; Clementi, M.; Tartaglia, M.; De Luca, A.p. Arg1809Cys substitution in neurofibromin is associated with a distinctive NF1 phenotype without neurofibromas. Eur. J. Hum. Genet., 2015, 23(8), 1068-1071.
[http://dx.doi.org/10.1038/ejhg.2014.243] [PMID: 25370043]
[11]
Santoro, C.; Maietta, A.; Giugliano, T.; Melis, D.; Perrotta, S.; Nigro, V.; Piluso, G. Arg(1809) substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur. J. Hum. Genet., 2015, 23(11), 1460-1461.
[http://dx.doi.org/10.1038/ejhg.2015.93] [PMID: 25966637]
[12]
Hamilton, S.; Friedman, J.J.C.g. Insights into the pathogenesis of neurofibromatosis 1 vasculopathy., 2000, 58(5), 341-344.
[http://dx.doi.org/10.1034/j.1399-0004.2000.580501.x]
[13]
Brems, H.; Beert, E.; de Ravel, T.; Legius, E.J.T.l.o. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1., 2009, 10(5), 508-515.
[14]
Longo, J.F.; Weber, S.M.; Turner-Ivey, B.P.; Carroll, S.L. Recent advances in the diagnosis and pathogenesis of neurofibromatosis type 1 (NF1)-associated peripheral nervous system neoplasms. 2018, 25(5), 353-368.
[15]
Setrajcic Dragos, V.; Blatnik, A.; Klancar, G.; Stegel, V.; Krajc, M.; Blatnik, O.; Novakovic, S.J.F.i.G. Two novel NF1 pathogenic variants causing the creation of a new splice site in patients with neurofibromatosis type I., 2019, 10, 762.
[http://dx.doi.org/10.3389/fgene.2019.00762]
[16]
Yao, R.; Yu, T.; Xu, Y.; Yu, L.; Wang, J.; Wang, X.; Wang, J.; Shen, Y.J.G. Clinical presentation and novel pathogenic variants among 68 chinese neurofibromatosis 1 children. Genes (Basel)., 2019, 10(11), 847.
[17]
Kim, O.Y.; Lee, J.H.; Sweeney, G.J.E.r.o.c.t. Metabolomic profiling as a useful tool for diagnosis and treatment of chronic disease: focus on obesity, diabetes and cardiovascular diseases. Expert Rev. Cardiovasc. Ther., 2013, 11(1), 61-68.
[http://dx.doi.org/10.1586/erc.12.121]
[18]
McGrath, C.M.; Young, S.P.J.N.R.R. Can metabolomic profiling predict response to therapy? Nature Reviews Rheumatol., 2019, 15(3), 129-130.
[http://dx.doi.org/10.1038/s41584-018-0136-z]
[19]
Öztürk, A. The clinical aproach to metabolomics and proteomics concepts. Turkiye Klinikleri J Vet Sci Intern Med-Special Topics, 2015, 1(1), 31-39.
[20]
Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; Moriyama, M.; Ikeda, I.; Chiba, A.; Oshita, F.; Imaizumi, A.; Yamamoto, H.; Miyano, H.; Horimoto, K.; Tochikubo, O.; Mitsushima, T.; Yamakado, M.; Okamoto, N. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One, 2011, 6(9), e24143.
[http://dx.doi.org/10.1371/journal.pone.0024143] [PMID: 21915291]
[21]
Imaizumi, A.; Adachi, Y.; Kawaguchi, T.; Higasa, K.; Tabara, Y.; Sonomura, K.; Sato, T.-a.; Takahashi, M.; Mizukoshi, T.; Yoshida, H.-o.J.E.J.H.G. Genetic basis for plasma amino acid concentrations based on absolute quantification: A genome-wide association study in the Japanese population. Eur. J. Human Genet., 2019, 27(4), 621-630.
[http://dx.doi.org/10.1038/s41431-018-0296-y]
[22]
Nakamura, H.; Nishikata, N.; Kawai, N.; Imaizumi, A.; Miyano, H.; Mori, M.; Yamamoto, H. Noguchi, Plasma amino acid profiles in healthy East Asian subpopulations living in Japan. American J. Human Biol., 2016, 28(2), 236-239.
[http://dx.doi.org/10.1002/ajhb.22787]
[23]
Yamaguchi, N.; Mahbub, M.; Takahashi, H.; Hase, R.; Ishimaru, Y.; Sunagawa, H.; Amano, H.; Kobayashi-Miura, M.; Kanda, H. Fujita, Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large Asian population. Environ. Health Preven. Med., 2017, 22(1), 35.
[24]
Yamakado, M.; Nagao, K.; Imaizumi, A.; Tani, M.; Toda, A.; Tanaka, T.; Jinzu, H.; Miyano, H.; Yamamoto, H.; Daimon, T.J.S.r. Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population., 2015, 5, 11918.
[http://dx.doi.org/10.1038/srep11918]
[25]
Miller, J.W.; Nadeau, M.R.; Smith, J.; Smith, D.; Selhub, J. Folate-deficiency-induced homocysteinaemia in rats: disruption of S-adenosylmethionine’s co-ordinate regulation of homocysteine metabolism. Biochem. J., 1994, 298(Pt 2), 415-419.
[http://dx.doi.org/10.1042/bj2980415] [PMID: 8135750]
[26]
Finkelstein, J.D.; Martin, J.J. Homocysteine. Int. J. Biochem. Cell Biol., 2000, 32(4), 385-389.
[http://dx.doi.org/10.1016/S1357-2725(99)00138-7] [PMID: 10762063]
[27]
Shah, S.H.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Crosslin, D.R.; Haynes, C.; Dungan, J.; Newby, L.K.; Hauser, E.R.; Ginsburg, G.S.; Newgard, C.B.; Kraus, W.E. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc. Genet., 2010, 3(2), 207-214.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.852814] [PMID: 20173117]
[28]
Vaarhorst, A.A.; Verhoeven, A.; Weller, C.M.; Böhringer, S.; Göraler, S.; Meissner, A.; Deelder, A.M.; Henneman, P.; Gorgels, A.P.; van den Brandt, P.A. A metabolomic profile is associated with the risk of incident coronary heart disease. Am. Heart J., 2014, 168(1), 45-52.
[http://dx.doi.org/10.1016/j.ahj.2014.01.019]
[29]
Leichtle, A.B.; Nuoffer, J-M.; Ceglarek, U.; Kase, J.; Conrad, T.; Witzigmann, H.; Thiery, J.; Fiedler, G.M. Serum amino acid profiles and their alterations in colorectal cancer. Metabolomics, 2012, 8(4), 643-653.
[http://dx.doi.org/10.1007/s11306-011-0357-5] [PMID: 22833708]
[30]
Witte, M.B.; Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair Regen., 2003, 11(6), 419-423.
[http://dx.doi.org/10.1046/j.1524-475X.2003.11605.x] [PMID: 14617280]
[31]
Satriano, J. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: Review article. Amino Acids, 2004, 26(4), 321-329.
[http://dx.doi.org/10.1007/s00726-004-0078-4] [PMID: 15290337]
[32]
Tachibana, K.; Mukai, K.; Hiraoka, I.; Moriguchi, S.; Takama, S.; Kishino, Y. Evaluation of the effect of arginine-enriched amino acid solution on tumor growth. JPEN J. Parenter. Enteral Nutr., 1985, 9(4), 428-434.
[http://dx.doi.org/10.1177/0148607185009004428] [PMID: 3928915]
[33]
Green, S.J.; Mellouk, S.; Hoffman, S.L.; Meltzer, M.S.; Nacy, C.A. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett., 1990, 25(1-3), 15-19.
[http://dx.doi.org/10.1016/0165-2478(90)90083-3] [PMID: 2126524]
[34]
Mühling, J.; Fuchs, M.; Fleck, C.; Sablotzki, A.; Krüll, M.; Dehne, M.G.; Gonter, J.; Weiss, S.; Engel, J.; Hempelmann, G. Effects of arginine, L-alanyl-L-glutamine or taurine on neutrophil (PMN) free amino acid profiles and immune functions in vitro. Amino Acids, 2002, 22(1), 39-53.
[http://dx.doi.org/10.1007/s726-002-8200-9] [PMID: 12025873]
[35]
Vissers, Y.L.; Dejong, C.H.; Luiking, Y.C.; Fearon, K.C.; von Meyenfeldt, M.F.; Deutz, N.E. Plasma arginine concentrations are reduced in cancer patients: Evidence for arginine deficiency? Am. J. Clin. Nutr., 2005, 81(5), 1142-1146.
[http://dx.doi.org/10.1093/ajcn/81.5.1142] [PMID: 15883440]
[36]
Kubota, A.; Meguid, M.M.; Hitch, D.C. Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors. Cancer, 1992, 69(9), 2343-2348.
[http://dx.doi.org/10.1002/1097-0142(19920501)69:9<2343::AIDCNCR2820690924>3.0.CO;2-S] [PMID: 1562982]
[37]
Scriver, C.R. The metabolic & molecular bases of inherited disease; McGraw-Hill: New York, Montreal, 2001.
[38]
Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med., 1999, 27(9-10), 922-935.
[http://dx.doi.org/10.1016/S0891-5849(99)00176-8] [PMID: 10569625]
[39]
Pittman, M.S.; Corker, H.; Wu, G.; Binet, M.B.; Moir, A.J.; Poole, R.K. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J. Biol. Chem., 2002, 277(51), 49841-49849.
[http://dx.doi.org/10.1074/jbc.M205615200] [PMID: 12393891]
[40]
Bender, A.S.; Reichelt, W.; Norenberg, M.D. Characterization of cystine uptake in cultured astrocytes. Neurochem. Int., 2000, 37(2-3), 269-276.
[http://dx.doi.org/10.1016/S0197-0186(00)00035-8] [PMID: 10812212]
[41]
Zhang, S.M.; Willett, W.C.; Selhub, J.; Manson, J.E.; Colditz, G.A.; Hankinson, S.E. A prospective study of plasma total cysteine and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev., 2003, 12(11 Pt 1), 1188-1193.
[PMID: 14652279]
[42]
Hack, V.; Schmid, D.; Breitkreutz, R.; Stahl-Henning, C.; Drings, P.; Kinscherf, R.; Taut, F.; Holm, E.; Dröge, W. Cystine levels, cystine flux, and protein catabolism in cancer cachexia, HIV/SIV infection, and senescence. FASEB J., 1997, 11(1), 84-92.
[http://dx.doi.org/10.1096/fasebj.11.1.9034170] [PMID: 9034170]
[43]
Kim, M-H.; Kim, H. The roles of glutamine in the intestine and its implication in intestinal diseases. Int. J. Mol. Sci., 2017, 18(5), 1051.
[http://dx.doi.org/10.3390/ijms18051051] [PMID: 28498331]
[44]
Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev., 1990, 48(8), 297-309.
[http://dx.doi.org/10.1111/j.1753-4887.1990.tb02967.x] [PMID: 2080048]
[45]
Blikslager, A.T.; Rhoads, J.M.; Bristol, D.G.; Roberts, M.C.; Argenzio, R.A. Glutamine and transforming growth factor-α stimulate extracellular regulated kinases and enhance recovery of villous surface area in porcine ischemic-injured intestine. Surgery, 1999, 125(2), 186-194.
[http://dx.doi.org/10.1016/S0039-6060(99)70264-3] [PMID: 10026753]
[46]
Ziegler, T.R.; Mantell, M.P.; Chow, J.C.; Rombeau, J.L.; Smith, R.J. Gut adaptation and the insulin-like growth factor system: regulation by glutamine and IGF-I administration. Am. J. Physiol., 1996, 271(5 Pt 1), G866-G875.
[PMID: 8944702]
[47]
Chen, L.; Cui, H. Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci., 2015, 16(9), 22830-22855.
[http://dx.doi.org/10.3390/ijms160922830] [PMID: 26402672]
[48]
Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med., 2002, 32(11), 1102-1115.
[http://dx.doi.org/10.1016/S0891-5849(02)00826-2] [PMID: 12031895]
[49]
Rudman, D.; Vogler, W.R.; Howard, C.H.; Gerron, G.G. Observations on the plasma amino acids of patients with acute leukemia. Cancer Res., 1971, 31(8), 1159-1165.
[PMID: 5285976]
[50]
Wang, L.; Liu, S.; Yang, W.; Yu, H.; Zhang, L.; Ma, P.; Wu, P.; Li, X.; Cho, K.; Xue, S.; Jiang, B. Plasma amino acid profile in patients with aortic dissection. Sci. Rep., 2017, 7(1), 40146.
[http://dx.doi.org/10.1038/srep40146] [PMID: 28071727]
[51]
van der Crabben, S.N.; Verhoeven-Duif, N.M.; Brilstra, E.H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T.J. An update on serine deficiency disorders. J. Inherit. Metab. Dis., 2013, 36(4), 613-619.
[http://dx.doi.org/10.1007/s10545-013-9592-4] [PMID: 23463425]
[52]
ElBaz, F.M.; Zaki, M.M.; Youssef, A.M.; ElDorry, G.F.; Elalfy, D.Y. Study of plasma amino acid levels in children with autism: An Egyptian sample. Egypt. J. Med. Hum. Genet., 2014, 15(2), 181-186.
[http://dx.doi.org/10.1016/j.ejmhg.2014.02.002]
[53]
Tirouvanziam, R.; Obukhanych, T.V.; Laval, J.; Aronov, P.A.; Libove, R.; Banerjee, A.G.; Parker, K.J.; O’Hara, R.; Herzenberg, L.A.; Herzenberg, L.A.; Hardan, A.Y. Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with Autism Spectrum Disorders. J. Autism Dev. Disord., 2012, 42(5), 827-836.
[http://dx.doi.org/10.1007/s10803-011-1314-x] [PMID: 21713591]
[54]
Opie, L.H. Metabolism of the heart in health and disease. I. Am. Heart J., 1968, 76(5), 685-698.
[http://dx.doi.org/10.1016/0002-8703(68)90168-3] [PMID: 4235250]
[55]
Kim, H.J.; Jang, S.H.; Ryu, J-S.; Lee, J.E.; Kim, Y.C.; Lee, M.K.; Jang, T.W.; Lee, S-Y.; Nakamura, H.; Nishikata, N.; Mori, M.; Noguchi, Y.; Miyano, H.; Lee, K.Y. The performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea. Lung Cancer, 2015, 90(3), 522-527.
[http://dx.doi.org/10.1016/j.lungcan.2015.10.006] [PMID: 26476713]
[56]
Katayama, K.; Higuchi, A.; Yamamoto, H.; Ikeda, A.; Kikuchi, S.; Shiozawa, M. Perioperative dynamics and significance of plasma-free amino acid profiles in colorectal cancer. BMC Surg., 2018, 18(1), 11.
[http://dx.doi.org/10.1186/s12893-018-0344-0] [PMID: 29466971]