Abstract
Background: Thrombolysis and endovascular thrombectomy are the two main therapeutic
strategies for ischemic stroke in clinic. However, reperfusion injury causes oxidative stress leading
to overproduction of reactive oxygen species, mitochondrial dysfunction and subsequent cell death.
Methods: We designed and synthesized two tetramethylpyrazine-nitrone derivatives (T-003 and T-
005) and investigated their abilities for scavenging free radicals and protective effects as well as
neurite outgrowth promotion in vitro.
Results: Both of them showed potent radical-scavenging activity and neuroprotective effects
against iodoacetic acid-induced cell injury. Furthermore, T-003 and T-005 significantly promoted
neurite outgrowth in PC12 cells.
Conclusion: Our results suggest that compound T-003 and T-005 could be potent antioxidants for
the treatment of neurological disease, particularly ischemic stroke.
Keywords:
Ischemic stroke, oxidative stress, tetramethypyrazine-nitrone derivatives, radical-scavenging activity, neurite
outgrowth, antioxidants.
Graphical Abstract
[3]
Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; Sila, C.A.; Hassan, A.E.; Millan, M.; Levy, E.I.; Mitchell, P.; Chen, M.; English, J.D.; Shah, Q.A.; Silver, F.L.; Pereira, V.M.; Mehta, B.P.; Baxter, B.W.; Abraham, M.G.; Cardona, P.; Veznedaroglu, E.; Hellinger, F.R.; Feng, L.; Kirmani, J.F.; Lopes, D.K.; Jankowitz, B.T.; Frankel, M.R.; Costalat, V.; Vora, N.A.; Yoo, A.J.; Malik, A.M.; Furlan, A.J.; Rubiera, M.; Aghaebrahim, A.; Olivot, J.M.; Tekle, W.G.; Shields, R.; Graves, T.; Lewis, R.J.; Smith, W.S.; Liebeskind, D.S.; Saver, J.L.; Jovin, T.G.; Investigators, D.T. DAWN trial investigators. thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.
N. Engl. J. Med., 2018,
378(1), 11-21.
[
http://dx.doi.org/10.1056/NEJMoa1706442] [PMID:
29129157]
[19]
Zhipei, S.; Keren, W.; Han, X. Mengxiao, Cao, Zhenghuai, and Tan. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2018, 10, 1008-1024.
[36]
Jiang, G.H.W. Chinese Academy of Medical Sciences Peking Union Medical College Doctorial. Dissertation, 1994.4