Delivery Systems for RNA Interference Therapy: Current Technologies and Limitations

Page: [356 - 372] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

In recent years, RNA interference technology has been extensively studied for its therapeutic potential against a wide variety of diseases. It aims to silence the expression of undesired genes associated with the target disease by the administration of RNA interference agents. However, these agents (nucleic acids) are unstable in the circulatory system and lack target specificity. Drug delivery systems are, therefore, crucial for the successful practice of the technique. A wide array of delivery systems has been developed to conquer these challenges, such as viral vectors, inorganic drug carriers, polymeric carriers and lipid-based carriers, with, however, significant limitations. In addition to the existing technologies, novel, innovative drug delivery systems, such as the configurable xenobot, are emerging at a rapid pace and have the potential to take the realm of biomedicine to the next level. This review summarizes technical difficulties in the development of drug delivery systems and current technologies developed for delivering RNAi agents with a discussion on their limitations.

Keywords: RNA interference, nucleic acid delivery, viral vector, exosome, albumin, liposome, xenobot.

Graphical Abstract

[1]
Xue HY, Guo P, Wen WC, Wong HL. Lipid-based nanocarriers for RNA delivery. Curr Pharm Des 2015; 21(22): 3140-7.
[http://dx.doi.org/10.2174/1381612821666150531164540] [PMID: 26027572]
[2]
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[3]
Kumar LD, Clarke AR. Gene manipulation through the use of small interfering RNA (siRNA): from in vitro to in vivo applications. Adv Drug Deliv Rev 2007; 59(2-3): 87-100.
[http://dx.doi.org/10.1016/j.addr.2007.03.009] [PMID: 17434644]
[4]
Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 2012; 4(8): 691-704.
[http://dx.doi.org/10.1002/emmm.201200245] [PMID: 22585399]
[5]
Mansoori B, Sandoghchian Shotorbani S, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharm Bull 2014; 4(4): 313-21.
[PMID: 25436185]
[6]
Musacchio T, Torchilin VP. siRNA delivery: from basics to therapeutic applications. Front Biosci 2013; 18: 58-79.
[http://dx.doi.org/10.2741/4087] [PMID: 23276909]
[7]
Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med 2012; 85(2): 187-200.
[PMID: 22737048]
[8]
Seth S, Johns R, Templin MV. Delivery and biodistribution of siRNA for cancer therapy: challenges and future prospects. Ther Deliv 2012; 3(2): 245-61.
[http://dx.doi.org/10.4155/tde.11.155] [PMID: 22834200]
[9]
Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 2005; 330(3): 755-9.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.041] [PMID: 15809061]
[10]
Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872-92.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[11]
Eto Y, Ohashi T. Gene therapy/cell therapy for lysosomal storage disease. J Inherit Metab Dis 2000; 23(3): 293-8.
[http://dx.doi.org/10.1023/A:1005692215317] [PMID: 10863945]
[12]
Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther 2006; 13(5): 839-49.
[http://dx.doi.org/10.1016/j.ymthe.2006.01.006] [PMID: 16545619]
[13]
Zamora-Avila DE, Zapata-Benavides P, Franco-Molina MA, et al. WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther 2009; 16(12): 892-9.
[http://dx.doi.org/10.1038/cgt.2009.35] [PMID: 19461674]
[14]
Dar GH, Gopal V, Rao NM. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression. Mol Pharm 2015; 12(2): 610-20.
[http://dx.doi.org/10.1021/mp500677x] [PMID: 25545110]
[15]
Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release 2009; 134(3): 158-68.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.021] [PMID: 19100795]
[16]
Lai WF. In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Rev Med Devices 2011; 8(2): 173-85.
[http://dx.doi.org/10.1586/erd.10.83] [PMID: 21381910]
[17]
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8(2): 129-38.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[18]
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel) 2017; 7(4): 7.
[http://dx.doi.org/10.3390/nano7040077] [PMID: 28379201]
[19]
Allémann E, Leroux J, Gurny R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 1998; 34(2-3): 171-89.
[http://dx.doi.org/10.1016/S0169-409X(98)00039-8] [PMID: 10837677]
[20]
Bernkop-Schnürch A, Krajicek ME. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J Control Release 1998; 50(1-3): 215-23.
[http://dx.doi.org/10.1016/S0168-3659(97)00136-3] [PMID: 9685888]
[21]
Brime B, Ballesteros MP, Frutos P. Preparation and in vitro characterization of gelatin microspheres containing Levodopa for nasal administration. J Microencapsul 2000; 17(6): 777-84.
[http://dx.doi.org/10.1080/02652040050161765] [PMID: 11063424]
[22]
Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release 2014; 195: 49-54.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.056] [PMID: 25111131]
[23]
Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247-66.
[http://dx.doi.org/10.1016/j.ejpb.2004.11.011] [PMID: 15939236]
[24]
Hickerson RP, Vlassov AV, Wang Q, et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides 2008; 18(4): 345-54.
[http://dx.doi.org/10.1089/oli.2008.0149] [PMID: 18844576]
[25]
Sarett SM, Kilchrist KV, Miteva M, Duvall CL. Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles. J Biomed Mater Res A 2015; 103(9): 3107-16.
[http://dx.doi.org/10.1002/jbm.a.35413] [PMID: 25641816]
[26]
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[27]
Wang J, Mi P, Lin G, Wáng YX, Liu G, Chen X. Imaging-guided delivery of RNAi for anticancer treatment. Adv Drug Deliv Rev 2016; 104: 44-60.
[http://dx.doi.org/10.1016/j.addr.2016.01.008] [PMID: 26805788]
[28]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[29]
Jarad G, Miner JH. Update on the glomerular filtration barrier. Curr Opin Nephrol Hypertens 2009; 18(3): 226-32.
[http://dx.doi.org/10.1097/MNH.0b013e3283296044] [PMID: 19374010]
[30]
Wartiovaara J, Ofverstedt LG, Khoshnoodi J, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 2004; 114(10): 1475-83.
[http://dx.doi.org/10.1172/JCI22562] [PMID: 15545998]
[31]
Huang Y, Hong J, Zheng S, et al. Elimination pathways of systemically delivered siRNA. Mol Ther 2011; 19(2): 381-5.
[http://dx.doi.org/10.1038/mt.2010.266] [PMID: 21119623]
[32]
Lappalainen K, Jääskeläinen I, Syrjänen K, Urtti A, Syrjänen S. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm Res 1994; 11(8): 1127-31.
[http://dx.doi.org/10.1023/A:1018932714745] [PMID: 7971713]
[33]
Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004; 83(3): 97-111.
[http://dx.doi.org/10.1078/0171-9335-00363] [PMID: 15202568]
[34]
Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev 2007; 59(2-3): 134-40.
[http://dx.doi.org/10.1016/j.addr.2007.03.004] [PMID: 17451840]
[35]
Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 2007; 104(32): 12982-7.
[http://dx.doi.org/10.1073/pnas.0703778104] [PMID: 17652171]
[36]
Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 2008; 10(6): 610-8.
[http://dx.doi.org/10.1002/jgm.1189] [PMID: 18338819]
[37]
Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res 2006; 34(10): e73.
[http://dx.doi.org/10.1093/nar/gkl388] [PMID: 16740739]
[38]
Meng Z, Lu M. RNA interference-induced innate immunity, off-target effect, or immune adjuvant? Front Immunol 2017; 8: 331.
[http://dx.doi.org/10.3389/fimmu.2017.00331] [PMID: 28386261]
[39]
Huang RK, Steinmetz NF, Fu CY, Manchester M, Johnson JE. Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine (Lond) 2011; 6(1): 55-68.
[http://dx.doi.org/10.2217/nnm.10.99] [PMID: 21182418]
[40]
Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF. Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2015; 2(1): 379-401.
[http://dx.doi.org/10.1146/annurev-virology-100114-055141] [PMID: 26958921]
[41]
Galaway FA, Stockley PG. MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 2013; 10(1): 59-68.
[http://dx.doi.org/10.1021/mp3003368] [PMID: 23110441]
[42]
Choi KM, Kim K, Kwon IC, Kim IS, Ahn HJ. Systemic delivery of siRNA by chimeric capsid protein: tumor targeting and RNAi activity in vivo . Mol Pharm 2013; 10(1): 18-25.
[http://dx.doi.org/10.1021/mp300211a] [PMID: 22663765]
[43]
Pokorski JK, Breitenkamp K, Liepold LO, Qazi S, Finn MG. Functional virus-based polymer-protein nanoparticles by atom transfer radical polymerization. J Am Chem Soc 2011; 133(24): 9242-5.
[http://dx.doi.org/10.1021/ja203286n] [PMID: 21627118]
[44]
Rhee JK, Baksh M, Nycholat C, Paulson JC, Kitagishi H, Finn MG. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules 2012; 13(8): 2333-8.
[http://dx.doi.org/10.1021/bm300578p] [PMID: 22827531]
[45]
Azizgolshani O, Garmann RF, Cadena-Nava R, Knobler CM, Gelbart WM. Reconstituted plant viral capsids can release genes to mammalian cells. Virology 2013; 441(1): 12-7.
[http://dx.doi.org/10.1016/j.virol.2013.03.001] [PMID: 23608360]
[46]
Lai WF. Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 2013; 12(1): 310-5.
[http://dx.doi.org/10.1016/j.arr.2012.08.003] [PMID: 22982112]
[47]
Gaudet D, Méthot J, Déry S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 2013; 20(4): 361-9.
[http://dx.doi.org/10.1038/gt.2012.43] [PMID: 22717743]
[48]
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12(5): 341-55.
[http://dx.doi.org/10.1038/nrg2988] [PMID: 21499295]
[49]
Nathwani AC, Rosales C, McIntosh J, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther 2011; 19(5): 876-85.
[http://dx.doi.org/10.1038/mt.2010.274] [PMID: 21245849]
[50]
Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365(25): 2357-65.
[http://dx.doi.org/10.1056/NEJMoa1108046] [PMID: 22149959]
[51]
Brown WL, Mastico RA, Wu M, et al. RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology 2002; 45(4-6): 371-80.
[http://dx.doi.org/10.1159/000067930] [PMID: 12602361]
[52]
Lewis JD, Destito G, Zijlstra A, et al. Viral nanoparticles as tools for intravital vascular imaging. Nat Med 2006; 12(3): 354-60.
[http://dx.doi.org/10.1038/nm1368] [PMID: 16501571]
[53]
Ren Y, Wong SM, Lim LY. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem 2007; 18(3): 836-43.
[http://dx.doi.org/10.1021/bc060361p] [PMID: 17407258]
[54]
Rae C, Koudelka KJ, Destito G, Estrada MN, Gonzalez MJ, Manchester M. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs). PLoS One 2008; 3(10): e3315.
[http://dx.doi.org/10.1371/journal.pone.0003315] [PMID: 18830402]
[55]
Yildiz I, Lee KL, Chen K, Shukla S, Steinmetz NF. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery. J Control Release 2013; 172(2): 568-78.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.023] [PMID: 23665254]
[56]
Cao J, Guenther RH, Sit TL, Opperman CH, Lommel SA, Willoughby JA. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. Small 2014; 10(24): 5126-36.
[http://dx.doi.org/10.1002/smll.201400558] [PMID: 25098668]
[57]
Millán JG, Brasch M, Anaya-Plaza E, et al. Self-assembly triggered by self-assembly: optically active, paramagnetic micelles encapsulated in protein cage nanoparticles. J Inorg Biochem 2014; 136: 140-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.01.004] [PMID: 24513535]
[58]
Everts M, Saini V, Leddon JL, et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 2006; 6(4): 587-91.
[http://dx.doi.org/10.1021/nl0500555] [PMID: 16608249]
[59]
Váňová J, Hejtmánková A, Žáčková Suchanová J, et al. Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576: 119008.
[http://dx.doi.org/10.1016/j.ijpharm.2019.119008] [PMID: 31901358]
[60]
Guenther CM, Kuypers BE, Lam MT, Robinson TM, Zhao J, Suh J. Synthetic virology: engineering viruses for gene delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(6): 548-58.
[http://dx.doi.org/10.1002/wnan.1287] [PMID: 25195922]
[61]
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[62]
Ylä-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 2012; 20(10): 1831-2.
[http://dx.doi.org/10.1038/mt.2012.194] [PMID: 23023051]
[63]
de Grey AD. The foreseeability of real anti-aging medicine: focusing the debate. Exp Gerontol 2003; 38(9): 927-34.
[http://dx.doi.org/10.1016/S0531-5565(03)00155-4] [PMID: 12954478]
[64]
Aljabali AA, Shukla S, Lomonossoff GP, Steinmetz NF, Evans DJ. CPMV-DOX delivers. Mol Pharm 2013; 10(1): 3-10.
[http://dx.doi.org/10.1021/mp3002057] [PMID: 22827473]
[65]
Tomalia DA. In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 2009; 11(6): 1251-310.
[http://dx.doi.org/10.1007/s11051-009-9632-z] [PMID: 21170133]
[66]
Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 2014; 25(1): 012001.
[http://dx.doi.org/10.1088/0957-4484/25/1/012001] [PMID: 24334327]
[67]
Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res 2011; 28(2): 237-59.
[http://dx.doi.org/10.1007/s11095-010-0318-0] [PMID: 21104301]
[68]
Alhaddad A, Adam MP, Botsoa J, et al. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 2011; 7(21): 3087-95.
[http://dx.doi.org/10.1002/smll.201101193] [PMID: 21913326]
[69]
Young SW, Stenzel M, Yang JL. Nanoparticle-siRNA: A potential cancer therapy? Crit Rev Oncol Hematol 2016; 98: 159-69.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.015] [PMID: 26597018]
[70]
Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 2007; 28(8): 1565-71.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.018] [PMID: 17161865]
[71]
Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res Int 2013; 2013: 782041.
[http://dx.doi.org/10.1155/2013/782041] [PMID: 23844368]
[72]
Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014; 190: 440-50.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.037] [PMID: 24874288]
[73]
Zhang Z, Yang X, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006; 12(16): 4933-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2831] [PMID: 16914582]
[74]
Mallapragada SK, Brenza TM, McMillan JM, et al. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomedicine (Lond) 2015; 11(3): 715-29.
[http://dx.doi.org/10.1016/j.nano.2014.12.013] [PMID: 25652894]
[75]
Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 2014; 9: 4357-73.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[76]
Shao ZH, Wang PJ, Ni J, Li MH, Gao XL, Zhao XH. In vivo labeling of rat neural progenitor cells in subventricular zone with superparamagnetic iron oxide for tracking of magnetic resonance imaging. Zhonghua Yi Xue Za Zhi 2013; 93(11): 807-10.
[PMID: 23859383]
[77]
Chen CC, Ku MC, D M J, Lai JS, Hueng DY, Chang C. Simple SPION incubation as an efficient intracellular labeling method for tracking neural progenitor cells using MRI. PLoS One 2013; 8(2): e56125.
[http://dx.doi.org/10.1371/journal.pone.0056125] [PMID: 23468856]
[78]
Vande Velde G, Couillard-Després S, Aigner L, Himmelreich U, van der Linden A. In situ labeling and imaging of endogenous neural stem cell proliferation and migration. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(6): 663-79.
[http://dx.doi.org/10.1002/wnan.1192] [PMID: 22933366]
[79]
Ren YJ, Zhang S, Mi R, et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix. Acta Biomater 2013; 9(8): 7727-36.
[http://dx.doi.org/10.1016/j.actbio.2013.04.034] [PMID: 23628775]
[80]
Miyoshi S, Flexman JA, Cross DJ, et al. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 2005; 7(4): 286-95.
[http://dx.doi.org/10.1007/s11307-005-0008-1] [PMID: 16080022]
[81]
Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1): 171-4.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[82]
Kreuter J. Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain. Pharmaceutics 2015; 7(1): 3-9.
[http://dx.doi.org/10.3390/pharmaceutics7010003] [PMID: 25654637]
[83]
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16(10): 1564-9.
[http://dx.doi.org/10.1023/A:1018983904537] [PMID: 10554098]
[84]
Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109(5): 759-67.
[http://dx.doi.org/10.1002/ijc.20048] [PMID: 14999786]
[85]
Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997; 14(3): 325-8.
[http://dx.doi.org/10.1023/A:1012098005098] [PMID: 9098875]
[86]
Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 1998; 15(1): 67-74.
[http://dx.doi.org/10.3109/02652049809006836] [PMID: 9463808]
[87]
Toub N, Bertrand J-R, Tamaddon A, et al. Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm Res 2006; 23(5): 892-900.
[http://dx.doi.org/10.1007/s11095-006-9901-9] [PMID: 16715379]
[88]
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003; 5: 1-16.
[http://dx.doi.org/10.22203/eCM.v005a01] [PMID: 14562275]
[89]
Tamada JA, Langer R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci USA 1993; 90(2): 552-6.
[http://dx.doi.org/10.1073/pnas.90.2.552] [PMID: 8421690]
[90]
von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002; 23(21): 4221-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00170-9] [PMID: 12194525]
[91]
Pfeifer BA, Burdick JA, Langer R. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials 2005; 26(2): 117-24.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.015] [PMID: 15207458]
[92]
Determan AS, Wilson JH, Kipper MJ, Wannemuehler MJ, Narasimhan B. Protein stability in the presence of polymer degradation products: consequences for controlled release formulations. Biomaterials 2006; 27(17): 3312-20.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.054] [PMID: 16504288]
[93]
Budhian A, Siegel SJ, Winey KI. Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int J Pharm 2008; 346(1-2): 151-9.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.011] [PMID: 17681683]
[94]
Yan Y, Zhou K, Xiong H, et al. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials 2017; 118: 84-93.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.001] [PMID: 27974266]
[95]
Gelperina S, Maksimenko O, Khalansky A, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 2010; 74(2): 157-63.
[http://dx.doi.org/10.1016/j.ejpb.2009.09.003] [PMID: 19755158]
[96]
Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007; 122(1): 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.022] [PMID: 17651855]
[97]
Li J, Zhang C, Li J, et al. Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res 2013; 30(7): 1813-23.
[http://dx.doi.org/10.1007/s11095-013-1025-4] [PMID: 23549751]
[98]
Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008; 29(33): 4429-38.
[http://dx.doi.org/10.1016/j.biomaterials.2008.08.004] [PMID: 18760470]
[99]
Wohlfart S, Khalansky AS, Gelperina S, et al. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One 2011; 6(5): e19121.
[http://dx.doi.org/10.1371/journal.pone.0019121] [PMID: 21573151]
[100]
Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 1983; 4(2): 131-3.
[http://dx.doi.org/10.1016/0142-9612(83)90054-6] [PMID: 6860755]
[101]
Wu MP, Tamada JA, Brem H, Langer R. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy. J Biomed Mater Res 1994; 28(3): 387-95.
[http://dx.doi.org/10.1002/jbm.820280314] [PMID: 8077254]
[102]
Howard MA III, Gross A, Grady MS, et al. Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg 1989; 71(1): 105-12.
[http://dx.doi.org/10.3171/jns.1989.71.1.0105] [PMID: 2567778]
[103]
Brem H, Kader A, Epstein JI, et al. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 1989; 5(2): 55-65.
[http://dx.doi.org/10.1089/sct.1989.5.55] [PMID: 2772427]
[104]
Jampel HD, Koya P, Leong K, Quigley HA. In vitro release of hydrophobic drugs from polyanhydride disks. Ophthalmic Surg 1991; 22(11): 676-80.
[PMID: 1686489]
[105]
Lesniak MS, Upadhyay U, Goodwin R, Tyler B, Brem H. Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res 2005; 25(6B): 3825-31.
[PMID: 16312042]
[106]
Domb AJ, Rock M, Schwartz J, et al. Metabolic disposition and elimination studies of a radiolabelled biodegradable polymeric implant in the rat brain. Biomaterials 1994; 15(9): 681-8.
[http://dx.doi.org/10.1016/0142-9612(94)90166-X] [PMID: 7948590]
[107]
Torres MP, Vogel BM, Narasimhan B, Mallapragada SK. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J Biomed Mater Res A 2006; 76(1): 102-10.
[http://dx.doi.org/10.1002/jbm.a.30510] [PMID: 16138330]
[108]
Tabata Y, Langer R. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharm Res 1993; 10(3): 391-9.
[http://dx.doi.org/10.1023/A:1018988222324] [PMID: 8464812]
[109]
Jain JP, Modi S, Kumar N. Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility. J Biomed Mater Res A 2008; 84(3): 740-52.
[http://dx.doi.org/10.1002/jbm.a.31456] [PMID: 17635032]
[110]
Shieh L, Tamada J, Chen I, Pang J, Domb A, Langer R. Erosion of a new family of biodegradable polyanhydrides. J Biomed Mater Res 1994; 28(12): 1465-75.
[http://dx.doi.org/10.1002/jbm.820281212] [PMID: 7876286]
[111]
Quick DJ, Macdonald KK, Anseth KS. Delivering DNA from photocrosslinked, surface eroding polyanhydrides. J Control Release 2004; 97(2): 333-43.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.001] [PMID: 15196760]
[112]
Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. J Control Release 2008; 126(3): 205-16.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.018] [PMID: 18258328]
[113]
Shamji MF, Hwang P, Bullock RW, Adams SB, Nettles DL, Setton LA. Release and activity of anti-TNFalpha therapeutics from injectable chitosan preparations for local drug delivery. J Biomed Mater Res B Appl Biomater 2009; 90(1): 319-26.
[http://dx.doi.org/10.1002/jbm.b.31289] [PMID: 19072988]
[114]
Ohta T, Tani A, Kimbara K, Kawai F. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 2005; 68(5): 639-46.
[http://dx.doi.org/10.1007/s00253-005-1936-z] [PMID: 15726348]
[115]
Kawai F. Microbial degradation of polyethers. Appl Microbiol Biotechnol 2002; 58(1): 30-8.
[http://dx.doi.org/10.1007/s00253-001-0850-2] [PMID: 11831473]
[116]
Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130(2): 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[117]
Pillé JY, Li H, Blot E, et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 2006; 17(10): 1019-26.
[http://dx.doi.org/10.1089/hum.2006.17.1019] [PMID: 17007568]
[118]
Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm 2014; 87(1): 19-29.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.013] [PMID: 24607790]
[119]
Cortes J, Saura C. Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer 2010; 8: 1-10.
[http://dx.doi.org/10.1016/S1359-6349(10)70002-1]
[120]
Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020; 43(1): 118-33.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[121]
Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 2018; 48(1): 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[122]
Stehle G, Sinn H, Wunder A, et al. The loading rate determines tumor targeting properties of methotrexate-albumin conjugates in rats. Anticancer Drugs 1997; 8(7): 677-85.
[http://dx.doi.org/10.1097/00001813-199708000-00006] [PMID: 9311444]
[123]
Stehle G, Wunder A, Sinn H, et al. Pharmacokinetics of methotrexate-albumin conjugates in tumor-bearing rats. Anticancer Drugs 1997; 8(9): 835-44.
[http://dx.doi.org/10.1097/00001813-199710000-00004] [PMID: 9402310]
[124]
Son S, Song S, Lee SJ, et al. Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials 2013; 34(37): 9475-85.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.085] [PMID: 24050874]
[125]
Choi J-H, Hwang H-J, Shin SW, Choi J-W, Um SH, Oh B-K. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy. Nanoscale 2015; 7(20): 9229-37.
[http://dx.doi.org/10.1039/C5NR00211G] [PMID: 25928110]
[126]
Byeon HJ, Thao Q, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release 2016; 225: 301-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.046] [PMID: 26826308]
[127]
Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001; 46(1-3): 247-79.
[http://dx.doi.org/10.1016/S0169-409X(00)00139-3] [PMID: 11259843]
[128]
Vaidya B, Kulkarni NS, Shukla SK, et al. Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. Int J Pharm 2020; 577: 118995.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118995] [PMID: 31935471]
[129]
Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006; 14(1): 45-53.
[http://dx.doi.org/10.1080/10611860600612953] [PMID: 16603451]
[130]
Ruiz-Peña M, Oropesa-Nuñez R, Pons T, Louro SRW, Pérez-Gramatges A. Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin. Colloids Surf B Biointerfaces 2010; 75(1): 282-9.
[http://dx.doi.org/10.1016/j.colsurfb.2009.08.046] [PMID: 19782541]
[131]
Taneja N, Singh KK. Rational design of polysorbate 80 stabilized human serum albumin nanoparticles tailored for high drug loading and entrapment of irinotecan. Int J Pharm 2018; 536(1): 82-94.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.024] [PMID: 29146538]
[132]
Elsadek B, Graeser R, Warnecke A, et al. Optimization of an albumin-binding prodrug of Doxorubicin that is cleaved by prostate-specific antigen. ACS Med Chem Lett 2010; 1(5): 234-8.
[http://dx.doi.org/10.1021/ml100060m] [PMID: 24900200]
[133]
Xu R, Fisher M, Juliano RL. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 2011; 22(5): 870-8.
[http://dx.doi.org/10.1021/bc1002295] [PMID: 21452893]
[134]
Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv 2015; 12(5): 793-812.
[http://dx.doi.org/10.1517/17425247.2015.993313] [PMID: 25518870]
[135]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[136]
Sun X, Ma X, Yang X, Zhang X. Exosomes and female infertility. Curr Drug Metab 2019; 20(10): 773-80.
[http://dx.doi.org/10.2174/1389200220666191015155910] [PMID: 31749422]
[137]
Waldenström A, Ronquist G. Role of exosomes in myocardial remodeling. Circ Res 2014; 114(2): 315-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300584] [PMID: 24436427]
[138]
Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3(1): 011503.
[http://dx.doi.org/10.1063/1.5087122] [PMID: 31069333]
[139]
Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017; 142: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.011] [PMID: 28715655]
[140]
Alhasan AH, Patel PC, Choi CHJ, Mirkin CA. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. Small 2014; 10(1): 186-92.
[http://dx.doi.org/10.1002/smll.201302143] [PMID: 24106176]
[141]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[142]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[143]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[144]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[145]
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017; 8: 132-43.
[http://dx.doi.org/10.1016/j.omtn.2017.06.005] [PMID: 28918016]
[146]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[147]
Pathak K, Keshri L, Shah M. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics. Crit Rev Ther Drug Carrier Syst 2011; 28(4): 357-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i4.20] [PMID: 21967401]
[148]
Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol 2014; 14(1): 755-65.
[http://dx.doi.org/10.1166/jnn.2014.9080] [PMID: 24730295]
[149]
Tagami T, Uehara Y, Moriyoshi N, Ishida T, Kiwada H. Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. J Control Release 2011; 151(2): 149-54.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.013] [PMID: 21223988]
[150]
Yamada Y, Tabata M, Yasuzaki Y, et al. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line. Biomaterials 2014; 35(24): 6430-8.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.017] [PMID: 24816283]
[151]
Park HY, Noh EH, Chung H-M, Kang M-J, Kim EY, Park SP. Efficient generation of virus-free iPS cells using liposomal magnetofection. PLoS One 2012; 7(9): e45812.
[http://dx.doi.org/10.1371/journal.pone.0045812] [PMID: 23049868]
[152]
Madeira C, Mendes RD, Ribeiro SC, et al. Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol 2010; 2010: 735349.
[http://dx.doi.org/10.1155/2010/735349] [PMID: 20625411]
[153]
Lee S, Ashizawa AT, Kim KS, Falk DJ, Notterpek L. Liposomes to target peripheral neurons and Schwann cells. PLoS One 2013; 8(11): e78724.
[http://dx.doi.org/10.1371/journal.pone.0078724] [PMID: 24244347]
[154]
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104(1): 29-45.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.001] [PMID: 15500907]
[155]
Pinzón-Daza ML, Campia I, Kopecka J, Garzón R, Ghigo D, Riganti C. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab 2013; 14(6): 625-40.
[http://dx.doi.org/10.2174/1389200211314060001] [PMID: 23869808]
[156]
Wu J, Lizarzaburu ME, Kurth MJ, et al. Cationic lipid polymerization as a novel approach for constructing new DNA delivery agents. Bioconjug Chem 2001; 12(2): 251-7.
[http://dx.doi.org/10.1021/bc000097e] [PMID: 11312686]
[157]
Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv Healthc Mater 2013; 2(4): 576-84.
[http://dx.doi.org/10.1002/adhm.201200338] [PMID: 23184673]
[158]
Chen Y, Bathula SR, Li J, Huang L. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem 2010; 285(29): 22639-50.
[http://dx.doi.org/10.1074/jbc.M110.125906] [PMID: 20460382]
[159]
Souto EB, Nayak AP, Murthy RS. Lipid nanoemulsions for anti-cancer drug therapy. Pharmazie 2011; 66(7): 473-8.
[PMID: 21812320]
[160]
Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014; 22(12): 2118-29.
[http://dx.doi.org/10.1038/mt.2014.133] [PMID: 25027661]
[161]
Oh MH, Kim JS, Lee JY, Park TG, Nam YS. Radio-opaque theranostic nanoemulsions with synergistic anti-cancer activity of paclitaxel and Bcl-2 siRNA. RSC Advances 2013; 3: 14642.
[http://dx.doi.org/10.1039/c3ra40883c]
[162]
Vhora I, Patil S, Amrutiya J, Misra A. Liposomes and lipid envelope-type systems for systemic siRNA delivery. Curr Pharm Des 2015; 21(31): 4541-55.
[http://dx.doi.org/10.2174/138161282131151013185850] [PMID: 26486141]
[163]
Khan MS, Hwang J, Lee K, et al. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules 2018; 23(9): 2210.
[http://dx.doi.org/10.3390/molecules23092210] [PMID: 30200336]
[164]
Duan L, Yang L, Jin J, et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020; 10(2): 462-83.
[http://dx.doi.org/10.7150/thno.37593] [PMID: 31903132]
[165]
Owen J, McEwan C, Nesbitt H, et al. Reducing tumour hypoxia via oral administration of oxygen nanobubbles. PLoS One 2016; 11(12): e0168088.
[http://dx.doi.org/10.1371/journal.pone.0168088] [PMID: 28036332]
[166]
Li H, Wang Z, Zhang J, et al. Enhanced shRNA delivery by the combination of polyethylenimine, ultrasound, and nanobubbles in liver cancer. Technol Health Care 2019; 27(S1): 263-72.
[http://dx.doi.org/10.3233/THC-199025] [PMID: 31045545]
[167]
Zhong S, Ling Z, Zhou Z, et al. Herceptin-decorated paclitaxel-loaded poly(lactide-co-glycolide) nanobubbles: ultrasound-facilitated release and targeted accumulation in breast cancers. Pharm Dev Technol 2020; 25(4): 454-63.http://dx.doi.org
[http://dx.doi.org/10.1080/10837450.2019.1709500] [PMID: 31873051]
[168]
Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 2000; 69(1): 43-52.
[http://dx.doi.org/10.1016/S0168-3659(00)00278-9] [PMID: 11018545]
[169]
Ahmed SE, Moussa HG, Martins AM, Abbas Y, Al-Sayah MH, Husseini GA. Factors affecting the acoustic in vitro release of calcein from pegylated liposomes. J Nanosci Nanotechnol 2019; 19(11): 6899-906.
[http://dx.doi.org/10.1166/jnn.2019.16646] [PMID: 31039841]
[170]
Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 2001; 71(3): 239-49.
[http://dx.doi.org/10.1016/S0168-3659(01)00216-4] [PMID: 11295217]
[171]
Nittayacharn P, Yuan H-X, Hernandez C, Bielecki P, Zhou H, Exner AA. Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles. J Pharm Sci 2019; 108(9): 3091-8.
[http://dx.doi.org/10.1016/j.xphs.2019.05.004] [PMID: 31095958]
[172]
Taylor-Pashow KM, Della Rocca J, Huxford RC, Lin W. Hybrid nanomaterials for biomedical applications. Chem Commun (Camb) 2010; 46(32): 5832-49.
[http://dx.doi.org/10.1039/c002073g] [PMID: 20623072]
[173]
Li H, Song SI, Song GY, Kim I. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials. J Nanosci Nanotechnol 2014; 14(2): 1425-40.
[http://dx.doi.org/10.1166/jnn.2014.9048] [PMID: 24749433]
[174]
Ryu JH, Lee S, Son S, et al. Theranostic nanoparticles for future personalized medicine. J Control Release 2014; 190: 477-84.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.027] [PMID: 24780269]
[175]
Muthu MS, Leong DT, Mei L, Feng S-S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014; 4(6): 660-77.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[176]
Muthu MS, Kulkarni SA, Raju A, Feng S-S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 2012; 33(12): 3494-501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[177]
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech 2014; 15(4): 822-33.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[178]
Xue HY, Wong HL. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials 2011; 32(10): 2662-72.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.029] [PMID: 21236485]
[179]
Xue H-Y, Wong H-L. Solid lipid-PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer siRNA therapy of prostate cancer in an all-in-one manner. ACS Nano 2011; 5(9): 7034-47.
[http://dx.doi.org/10.1021/nn201659z] [PMID: 21838301]
[180]
Xue HY, Narvikar M, Zhao J-B, Wong HL. Lipid encapsulation of cationic polymers in hybrid nanocarriers reduces their non-specific toxicity to breast epithelial cells. Pharm Res 2013; 30(2): 572-83.
[http://dx.doi.org/10.1007/s11095-012-0902-6] [PMID: 23135818]
[181]
Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 2011; 44(10): 957-68.
[http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
[182]
He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 2014; 136(14): 5181-4.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[183]
Huxford RC, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol 2010; 14(2): 262-8.
[http://dx.doi.org/10.1016/j.cbpa.2009.12.012] [PMID: 20071210]
[184]
Lai C-Y, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003; 125(15): 4451-9.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[185]
Kriegman S, Blackiston D, Levin M, Bongard J. A scalable pipeline for designing reconfigurable organisms. Proc Natl Acad Sci USA 2020; 117(4): 1853-9.
[http://dx.doi.org/10.1073/pnas.1910837117] [PMID: 31932426]
[186]
Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Intelligent, self-powered, drug delivery systems. Nanoscale 2013; 5(4): 1273-83.
[http://dx.doi.org/10.1039/C2NR32600K] [PMID: 23166050]
[187]
Kriegman S, Walker S, Shah D, Levin M, Kramer-Bottiglio R, Bongard J. Automated shapeshifting for function recovery in damaged. robots 2019.
[http://dx.doi.org/10.15607/RSS.2019.XV.028]
[188]
Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot 2017; 2(4): 2.
[http://dx.doi.org/10.1126/scirobotics.aam6431] [PMID: 31552379]
[189]
Oh Y-K, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61(10): 850-62.
[http://dx.doi.org/10.1016/j.addr.2009.04.018] [PMID: 19422869]
[190]
Zhou L-Y, Qin Z, Zhu Y-H, He Z-Y, Xu T. Current RNA-based therapeutics in clinical trials. Curr Gene Ther 2019; 19(3): 172-96.
[http://dx.doi.org/10.2174/1566523219666190719100526] [PMID: 31566126]
[191]
Ma C-C, Wang Z-L, Xu T, He Z-Y, Wei Y-Q. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40: 107502.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107502] [PMID: 31887345]
[192]
Resnier P, Montier T, Mathieu V, Benoit J-P, Passirani C. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 2013; 34(27): 6429-43.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.060] [PMID: 23727262]
[193]
Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci 2012; 101(11): 4046-66.
[http://dx.doi.org/10.1002/jps.23300] [PMID: 22927140]
[194]
Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 2014; 111(31): 11449-54.
[http://dx.doi.org/10.1073/pnas.1411393111] [PMID: 25049380]
[195]
Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 2013; 3(4): 406-17.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0429] [PMID: 23358650]
[196]
Ray KK, Wright RS, Kallend D, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med 2020; 382(16): 1507-19.
[http://dx.doi.org/10.1056/NEJMoa1912387] [PMID: 32187462]
[197]
Shajari N, Mansoori B, Davudian S, Mohammadi A, Baradaran B. Overcoming the challenges of siRNA delivery: nanoparticle strategies. Curr Drug Deliv 2017; 14(1): 36-46.
[http://dx.doi.org/10.2174/1567201813666160816105408] [PMID: 27538460]