One Pot Synthesis and Pharmacological Evaluation of Aryl Substituted Imidazoles as Potential Atypical Antipsychotics

Page: [338 - 354] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Second generation or “atypical” antipsychotics demonstrate an improved therapeutic profile over conventional neuroleptics. These are effective in both positive and negative symptoms of the disease and have a lower propensity to induce adverse symptoms.

Objective: The main objective of the research was in silico design and synthesis of potential atypical antipsychotics with combined antiserotonergic / antidopaminergic effect.

Methods: A one pot synthesis of aryl substituted imidazole derivatives was carried out in green solvent PEG-400 and the prepared compounds were evaluated for atypical antipsychotic activity in animal models for dopaminergic and serotonergic antagonism. The compounds were designed based on their 3D similarity studies to standard drugs and in silico (docking studies) with respect to 5-HT2A and D2 receptors.

Results: Results from the docking studies with respect to 5-HT2A and D2 receptors suggested a potential atypical antipsychotic profile for the test compounds. Theoretical ADME profiling of the compounds based on selected physicochemical parameters suggested an excellent compliance with Lipinski’s rules. The potential of these compounds to penetrate the blood brain barrier (log BB) was computed through an online software program and the values obtained for the compounds suggested a good potential for brain permeation. Reversal of apomorphine induced mesh climbing behaviour coupled with inactivity in the stereotypy assay indicates antidopaminergic effect and a potential atypical profile for the test compounds 1-5. Further, the activity of compounds in DOI assay indicated a 5-HT2 antagonistic profile (5-HT2 antagonism).

Conclusion: Compound 5 emerged as important lead compound showing combined antidopaminergic and antiserotonergic (5-HT2A) activity with a potential atypical antipsychotic profile.

Keywords: Atypical antipsychotics, imidazole derivatives, D2 / 5-HT2A antagonists, in silico, similarity and docking studies, antiserotonergic, antidopaminergic.

Graphical Abstract

[1]
Tandon, R.; Keshavan, M.S.; Nasrallah, H.A. Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophr. Res., 2008, 102(1-3), 1-18.
[http://dx.doi.org/10.1016/j.schres.2008.04.011] [PMID: 18514488]
[2]
Jibson, M.D.; Glick, I.D.; Tandon, R. Schizophrenia and other psychotic disorders. Focus, 2004, 2, 17-30.
[http://dx.doi.org/10.1176/foc.2.1.17]
[3]
Kapur, S.; Remington, G. Atypical antipsychotics: Vew directions and new challenges in the treatment of schizophrenia. Annu. Rev. Med., 2001, 52, 503-517.
[http://dx.doi.org/10.1146/annurev.med.52.1.503] [PMID: 11160792]
[4]
Schultz, S.H.; North, S.W.; Shields, C.G. Schizophrenia: A review. Am. Fam. Physician, 2007, 75(12), 1821-1829.
[PMID: 17619525]
[5]
Davies, M.A.; Sheffler, D.J.; Roth, B.L. Aripiprazole: A novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev., 2004, 10(4), 317-336.
[http://dx.doi.org/10.1111/j.1527-3458.2004.tb00030.x] [PMID: 15592581]
[6]
Kerti, G.; Kurtán, T.; Kövér, K.E.; Sólyom, S.; Greiner, I.; Antus, S. Synthesis and circular dichroism of optically active 1,3-disubstituted isochromans of dopamine D4 antagonist activity. Tetrahedron Asymmetry, 2010, 21, 2356-2360.
[http://dx.doi.org/10.1016/j.tetasy.2010.08.006]
[7]
Ortega, R.; Hübner, H.; Gmeiner, P.; Masaguer, C.F. Aromatic ring functionalization of benzolactam derivatives: New potent dopamine D3 receptor ligands. Bioorg. Med. Chem. Lett., 2011, 21(9), 2670-2674.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.083] [PMID: 21273071]
[8]
Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(7), 1159-1172.
[http://dx.doi.org/10.1016/j.pnpbp.2003.09.010] [PMID: 14642974]
[9]
Horacek, J.; Bubenikova-Valesova, V.; Kopecek, M.; Palenicek, T.; Dockery, C.; Mohr, P.; Höschl, C. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs, 2006, 20(5), 389-409.
[http://dx.doi.org/10.2165/00023210-200620050-00004] [PMID: 16696579]
[10]
Oyamada, Y.; Horiguchi, M. Rajagopal, L.; Miyauchi, M.; Meltzer, H.Y. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav. Brain Res., 2015, 285, 165-175.
[http://dx.doi.org/10.1016/j.bbr.2014.09.040] [PMID: 25448429]
[11]
Sullivan, L.C.; Clarke, W.P.; Berg, K.A. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr. Pharm. Des., 2015, 21(26), 3732-3738.
[http://dx.doi.org/10.2174/1381612821666150605111236] [PMID: 26044975]
[12]
Leopoldo, M.; Lacivita, E.; De Giorgio, P.; Fracasso, C.; Guzzetti, S.; Caccia, S.; Contino, M.; Colabufo, N.A.; Berardi, F.; Perrone, R. Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III. J. Med. Chem., 2008, 51(18), 5813-5822.
[http://dx.doi.org/10.1021/jm800615e] [PMID: 18800769]
[13]
van Loevezijn, A.; Venhorst, J.; Iwema Bakker, W.I.; de Korte, C.G.; de Looff, W.; Verhoog, S.; van Wees, J.W.; van Hoeve, M.; van de Woestijne, R.P.; van der Neut, M.A.; Borst, A.J.; van Dongen, M.J.; de Bruin, N.M.; Keizer, H.G.; Kruse, C.G.N. ′-(arylsulfonyl)pyrazoline-1-carboxamidines as novel, neutral 5-hydroxytryptamine 6 receptor (5-HT6R) antagonists with unique structural features. J. Med. Chem., 2011, 54(20), 7030-7054.
[http://dx.doi.org/10.1021/jm200466r] [PMID: 21866910]
[14]
Chen, A.T.; Nasrallah, H.A. Neuroprotective effects of the second generation antipsychotics. Schizophr. Res., 2019, 208, 1-7.
[http://dx.doi.org/10.1016/j.schres.2019.04.009] [PMID: 30982644]
[15]
He, J.; Kong, J.; Tan, Q.R.; Li, X.M. Neuroprotective effect of atypical antipsychotics in cognitive and non-cognitive behavioral impairment in animal models. Cell Adhes. Migr., 2009, 3(1), 129-137.
[http://dx.doi.org/10.4161/cam.3.1.7401] [PMID: 19372744]
[16]
Gil, C.H.; Kim, Y.R.; Lee, H.J.; Jung, D.H.; Shin, H.K.; Choi, B.T. Aripiprazole exerts a neuroprotective effect in mouse focal cerebral ischemia. Exp. Ther. Med., 2018, 15(1), 745-750.
[PMID: 29399080]
[17]
Csernansky, J.G.; Martin, M.V.; Czeisler, B.; Meltzer, M.A.; Ali, Z.; Dong, H. Neuroprotective effects of olanzapine in a rat model of neurodevelopmental injury. Pharmacol. Biochem. Behav., 2006, 83(2), 208-213.
[http://dx.doi.org/10.1016/j.pbb.2006.01.009] [PMID: 16524622]
[18]
Haupt, D.W. Differential metabolic effects of antipsychotic treatments. Eur. Neuropsychopharmacol., 2006, 16(Suppl. 3), S149-S155.
[http://dx.doi.org/10.1016/j.euroneuro.2006.06.003] [PMID: 16872808]
[19]
Bali, A.; Sharma, K.; Bhalla, A.; Bala, S.; Reddy, D.; Singh, A.; Kumar, A. Synthesis, evaluation and computational studies on a series of acetophenone based 1-(aryloxypropyl)-4-(chloroaryl) piperazines as potential atypical antipsychotics. Eur. J. Med. Chem., 2010, 45(6), 2656-2662.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.008] [PMID: 20207451]
[20]
Bali, A.; Sen, U.; Peshin, T. Synthesis, docking and pharmacological evaluation of novel indole based potential atypical antipsychotics. Eur. J. Med. Chem., 2014, 74, 477-490.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.020] [PMID: 24495776]
[21]
Maity, S.; Pathak, S.; Pramanik, A. Microwave assisted synthesis of 2,3-diaryl-6,7-dihydro-5H-pyrrolo[1,2-a] imidazoles through direct condensation of aryl 1,2-diketones and l-proline under solvent-free condition. Tetrahedron Lett., 2013, 54, 2528-2532.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.017]
[22]
Reddy, M.V.; Jeong, Y.T. Indium trifluoride: A highly efficient catalyst for the synthesis of fluorine-containing 2,4,5-trisubstituted imidazoles under solvent-free conditions. J. Fluor. Chem., 2012, 142, 45-51.
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.013]
[23]
Teimouri, A.; Chermahini, A.N. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. J. Mol. Catal. Chem., 2011, 346, 39-45.
[http://dx.doi.org/10.1016/j.molcata.2011.06.007]
[24]
Heravi, M.M.; Derikvand, F.; Bamoharram, F.F. Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. Chem., 2007, 263, 112-114.
[http://dx.doi.org/10.1016/j.molcata.2006.08.048]
[25]
Balalaie, S.; Hashemi, M.M.; Akhbari, M. A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett., 2003, 44, 1709-1711.
[http://dx.doi.org/10.1016/S0040-4039(03)00018-2]
[26]
Andujar, S.A.; Tosso, R.D.; Suvire, F.D.; Angelina, E.; Peruchena, N.; Cabedo, N.; Cortes, D.; Enriz, R.D. Searching the “biologically relevant”conformation of dopamine: A computational approach. J. Chem. Inf. Model., 2012, 52(1), 99-112.
[http://dx.doi.org/10.1021/ci2004225] [PMID: 22146008]
[27]
Masaguer, C.F.; Raviña, E.; Fontenla, J.A.; Brea, J.; Tristán, H.; Loza, M.I. Butyrophenone analogues in the carbazole series as potential atypical antipsychotics: Synthesis and determination of affinities at D(2), 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Eur. J. Med. Chem., 2000, 35(1), 83-95.
[http://dx.doi.org/10.1016/S0223-5234(00)00109-4] [PMID: 10733606]
[28]
Puratchikody, A.; Doble, M. Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles. Bioorg. Med. Chem., 2007, 15(2), 1083-1090.
[http://dx.doi.org/10.1016/j.bmc.2006.10.025] [PMID: 17079151]
[29]
Wang, X.C.; Gong, H.P.; Quan, Z.J.; Li, L.; Ye, H.L. PEG-400 as an efficient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5-tetraaryl-1H-imidazoles. Chin. Chem. Lett., 2009, 20, 44-47.
[http://dx.doi.org/10.1016/j.cclet.2008.10.005]
[30]
Kouznetsov, V.V.; Arenas, D.R.M.; Romero Bohórquez, A.R. PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole. Tetrahedron Lett., 2008, 49, 3097-3100.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.049]
[31]
Gupta, P.; Gupta, J.K. Synthesis of bioactive imidazoles: A review. Chem. Sci. J., 2015, 6, 91.
[http://dx.doi.org/10.4172/2150-3494.100091]
[32]
Azizi, N.; Manochehri, Z.; Nahayi, A.; Torkashvand, S. A facile one-pot synthesis of tetrasubstituted imidazoles catalyzed by eutectic mixture stabilized ferrofluid. J. Mol. Liq., 2014, 196, 153-158.
[http://dx.doi.org/10.1016/j.molliq.2014.03.013]
[33]
Husain, A.; Drabu, S.; Kumar, N.; Alam, M.M.; Bawa, S. Synthesis and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents. J. Pharm. Bioallied Sci., 2013, 5(2), 154-161.
[http://dx.doi.org/10.4103/0975-7406.111822] [PMID: 23833522]
[34]
Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R.K.; Ethayathulla, A.S.; Dey, S.; Singh, T.P. One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. J. Mol. Catal. Chem., 2007, 265, 177-182.
[http://dx.doi.org/10.1016/j.molcata.2006.10.009]
[35]
Ziarani, G.M.; Dashtianeh, Z.; Nahad, M.S.; Badiei, A. One-pot synthesis of 1,2,4,5-tetra substituted imidazoles using sulfonic acid functionalized silica (SiO2-Pr-SO3H). Arab. J. Chem., 2015, 8, 692-697.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.020]
[36]
Maleki, A.; Alirezvani, Z. A highly efficient synthesis of substituted imidazoles via a one-pot multicomponent reaction by using urea/hydrogen peroxide (UHP). J. Chil. Chem. Soc., 2016, 61, 3116-3119.
[http://dx.doi.org/10.4067/S0717-97072016000300022]
[37]
Marzouk, A.A.; Mohamed, S.K.; Aljohani, E.T.; Abdelhamid, A.A. New method for synthesis of mult-substituted imidazoles. J. Heterocycl. Chem., 2018, 55, 1775-1782.
[http://dx.doi.org/10.1002/jhet.3215]
[38]
Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals (Basel), 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202]
[39]
Vogel, H.G., Ed.; Drug Discovery and Evaluation: Pharmacological Assays, 3rd ed; Springer: New York, 2007, pp. 761-762.
[40]
Bali, A.; Reddy, A.C.D. Synthesis and evaluation of meta substituted 1-(aryloxypropyl)-4-(chloroaryl) piperazines as potential atypical antipsychotics. Med. Chem. Res., 2013, 22, 382-391.
[http://dx.doi.org/10.1007/s00044-012-0038-6]
[41]
Singh, S.; Bali, A.; Peshin, T. Synthesis and evaluation of aryl substituted propyl piperazines for potential atypical antipsychotic activity. Med. Chem., 2019, 15, 1.
[http://dx.doi.org/10.2174/1573406415666191022150435] [PMID: 31642788]
[42]
Barcelo, M.; Ravina, E.; Varela, M.J.; Brea, J.; Loza, M.L.; Masaguer, C.F. Potential atypical antipsychotics: Synthesis, binding affinity and SAR of new heterocyclic bioisosteric butyrophenone analogues as multitarget ligands. MedChemComm, 2011, 2, 1194-1200.
[http://dx.doi.org/10.1039/c1md00202c]
[43]
Stefanowicz, J.; Słowiński, T.; Wróbel, M.Z.; Ślifirski, G.; Dawidowski, M.; Stefanowicz, Z.; Jastrzębska-Więsek, M.; Partyka, A.; Wesołowska, A.; Turło, J. Synthesis and biological investigations of 3β-aminotropane arylamide derivatives with atypical antipsychotic profile. Med. Chem. Res., 2018, 27(8), 1906-1928.
[http://dx.doi.org/10.1007/s00044-018-2203-z] [PMID: 30100693]
[44]
Chen, Y.; Xu, X.; Liu, X.; Yu, M.; Liu, B-F.; Zhang, G. Synthesis and evaluation of a series of 2-substituted-5-thiopropylpiperazine (piperidine)-1,3,4-oxadiazoles derivatives as atypical antipsychotics. PLoS One, 2012, 7(4)e35186
[http://dx.doi.org/10.1371/journal.pone.0035186]] [PMID: 22558126]
[45]
Chen, Y.; Lan, Y.; Cao, X.; Xu, X.; Zhang, J.; Yu, M.; Liu, X.; Liua, B.; Zhang, G. Synthesis and evaluation of amide, sulfonamide and urea-benzisoxazole derivatives as potential atypical antipsychotics. MedChemComm, 2015, 6, 831-838.
[http://dx.doi.org/10.1039/C4MD00578C]
[46]
Gawai, A.A.; Das, S.; Parida, P.; Biyani, K. Homology modeling, docking, synthesis and pharmacological evaluation of new chromen-2-one derivatives with atypical antipsychotic activity. Drug Des., 2017, 6, 5.
[47]
Peprah, K.; Zhu, X.Y.; Eyunni, S.V.K.; Setola, V.; Roth, B.L.; Ablordeppey, S.Y. Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorg. Med. Chem., 2012, 20(3), 1291-1297.
[http://dx.doi.org/10.1016/j.bmc.2011.12.019] [PMID: 22245230]
[48]
van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J.R.; Raevsky, O.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target., 1998, 6(2), 151-165.
[http://dx.doi.org/10.3109/10611869808997889] [PMID: 9886238]
[49]
Kelder, J.; Grootenhuis, P.D.J.; Bayada, D.M.; Delbressine, L.P.C.; Ploemen, J.P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res., 1999, 16(10), 1514-1519.
[http://dx.doi.org/10.1023/A:1015040217741] [PMID: 10554091]
[50]
Iyer, M.; Mishra, R.; Han, Y.; Hopfinger, A.J. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm. Res., 2002, 19(11), 1611-1621.
[http://dx.doi.org/10.1023/A:1020792909928] [PMID: 12458666]