Combinatorial Chemistry & High Throughput Screening

Author(s): Mohammad Javad Azarhoosh* and Ali Reza Azarhoosh

DOI: 10.2174/1386207323666200915092724

Presenting a Four-Lump Dynamic Kinetic Model for Methanol to Light Olefins Process Over the Hierarchical SAPO-34 Catalyst Using Power Law Models

Page: [570 - 580] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objectives: A four-lump dynamic kinetic model on the hierarchical SAPO-34 catalyst in the methanol to light olefins (MTO) process has been presented using the power law models. Since decreased catalyst activity in the MTO process is common, for the applicability of the proposed model, the function of catalyst activity was computed as a function of the coke percentage deposited on the catalyst.

Materials and Methods: The reactant and products were divided into four lumps, including methanol and dimethyl ether (DME), light olefins (ethylene and propylene), light paraffin (methane, ethane, and propane) and heavier hydrocarbons from C4. The one-dimensional ideal plug reactor was used for the simulation of the MTO reactor. The kinetic parameters and the catalyst activity function were predicted using the particle swarm optimization (PSO) algorithm.

Results: The comparison of product distribution in the experimental model and the results of the kinetic model indicated the high accuracy of the presented model. The effect of operational parameters such as temperature and weight hourly space velocity (WHSV) on the mole percent of light olefins was investigated using the proposed kinetic model. The optimized value of temperature and WHSV to reach the maximum yield of light olefins was respectively 460 ˚C and 4.2 h-1.

Conclusion: The passive kinetic coefficients were estimated in the reaction rate constant and catalyst activity function with the help of the PSO optimization algorithm. The mole fraction of different products and the reactant arising from modeling at the reactor outlet was compared with experimental results, which indicated the high accuracy of the presented kinetic model. The results also revealed that the selection of high and low temperatures and WHSV decreases the yield of light olefins and the lifetime of the catalyst.

Keywords: Kinetic study, lump modeling, hierarchical catalyst, SAPO-34, MTO process, petrochemical industries.

[1]
Yang, M.; Fan, D.; Wei, Y.; Tian, P.; Liu, Z. Recent Progress in Methanol-to-Olefins (MTO). Catalysts. Adv. Mater., 2019, 31(50)e1902181
[http://dx.doi.org/10.1002/adma.201902181] [PMID: 31496008]
[2]
Hwang, A.; Johnson, B.A.; Bhan, A. Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34. J. Catal., 2019, 369, 86-94.
[http://dx.doi.org/10.1016/j.jcat.2018.10.022]
[3]
Azarhoosh, M.J.; Halladj, R.; Askari, S.; Aghaeinejad-Meybodi, A. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Ultrason. Sonochem., 2019, 58104646
[http://dx.doi.org/10.1016/j.ultsonch.2019.104646] [PMID: 31450297]
[4]
Bollini, P.; Chen, T.T.; Neurock, M.; Bhan, A. Mechanistic role of water in HSSZ-13 catalyzed methanol-to-olefins conversion. Catal. Sci. Technol., 2019, 9(16), 4374-4383.
[http://dx.doi.org/10.1039/C9CY01015G]
[5]
Hernandez, E.D.; Jentoft, F.C. Spectroscopic Signatures Reveal Cyclopentenyl Cation Contributions in Methanol-to-Olefins Catalysis. ACS Catal., 2020.
[http://dx.doi.org/10.1021/acscatal.0c00721]
[6]
Bergerbit, C.; Baffie, F.; Wolpers, A.; Dugas, P-Y.; Boyron, O.; Taam, M.; Lansalot, M.; Monteil, V.; D’Agosto, F. Ethylene Polymerization-induced self-assembly (PISA) of poly(ethylene oxide)-block-polyethylene copolymers via RAFT. Angew. Chem. Int. Ed. Engl., 2020, 59(26), 10385-10390.
[http://dx.doi.org/10.1002/anie.202001741] [PMID: 32196910]
[7]
Käselau, S.; Scheel, S.; Petersson, L.; Ho, C.H.; Luinstra, G.A. Isotactic polypropylene metal oxide and silica nanocomposites by a two‐step process comprising in situ olefin polymerization and melt compounding. Polym. Int., 2019, 68(5), 946-954.
[http://dx.doi.org/10.1002/pi.5785]
[8]
Liu, Z.; Li, H.; Zhang, T.; Wang, Y.; Shi, P.; Wang, Y. Mother liquor induced preparation of SAPO-34 zeolite for MTO reaction. Catal. Today, 2020.
[9]
DeLuca, M.; Janes, C.; Hibbitts, D.D. Contrasting arene, alkene, diene, and formaldehyde hydrogenation in H-ZSM-5, H-SSZ-13, and H-SAPO-34 zeolite frameworks during MTO. ACS Catal., 2019.
[10]
Pan, Y.; Chen, G.; Yang, G.; Chen, X.; Yu, J. Efficient post-synthesis of hierarchical SAPO-34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance. Inorg. Chem. Front., 2019, 6(5), 1299-1303.
[http://dx.doi.org/10.1039/C9QI00245F]
[11]
Yang, H.; Miao, P.; Sun, Q.; Zhang, Y.; Tian, D. Dual Templating Fabrication of Hollow SAPO‐34 Molecular Sieves for Enhanced MTO Catalytic Activity and Selectivity. Cryst. Res. Technol., 2019, 54(2)1800132
[http://dx.doi.org/10.1002/crat.201800132]
[12]
Chen, H.; Wang, M.; Yang, M.; Shang, W.; Yang, C.; Liu, B. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J. Mater. Sci., 2019, 54(11), 8202-8215.
[http://dx.doi.org/10.1007/s10853-019-03485-w]
[13]
Zapater, D.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Counteracting sapo-34 catalyst deactivation in mto process using a two zone fluidized bed reactor: Reactor testing and process viability. Catal. Today, 2020, 362, 155-161.
[http://dx.doi.org/10.1016/j.cattod.2020.03.025]
[14]
Varzaneh, A.Z.; Towfighi, J.; Moghaddam, M.S. Synthesis of hierarchical SAPO-34 catalysts modified with manganese nanoparticles for conversion of methanol to light olefins: a deactivation and regeneration study. React. Kinet. Mech. Catal., 2019, 128(2), 1043-1063.
[http://dx.doi.org/10.1007/s11144-019-01665-y]
[15]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Application of evolutionary algorithms for modelling and optimisation of ultrasound-related parameters on synthesised SAPO-34 catalysts: crystallinity and particle size. Prog. React. Kinet. Mech., 2018, 43(3-4), 236-243.
[http://dx.doi.org/10.3184/146867818X15233705894446]
[16]
Rami, M.D.; Taghizadeh, M.; Akhoundzadeh, H. Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant. Microporous Mesoporous Mater., 2019, 285, 259-270.
[http://dx.doi.org/10.1016/j.micromeso.2019.05.028]
[17]
Varzaneh, A.Z.; Towfighi, J.; Moghaddam, M.S. Synthesis of zirconium modified hierarchical sapo-34 catalysts using carbon nanotube template for conversion of methanol to light olefins. Petrol. Chem., 2020, 60(2), 204-211.
[http://dx.doi.org/10.1134/S0965544120020097]
[18]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Sonochemical synthesis of SAPO-34 catalyst with hierarchical structure using CNTs as mesopore template. Res. Chem. Intermed., 2017, 43(5), 3265-3282.
[http://dx.doi.org/10.1007/s11164-016-2824-0]
[19]
Yuan, X.; Li, H.; Ye, M.; Liu, Z. Kinetic modeling of methanol to olefins process over SAPO‐34 catalyst based on the dual‐cycle reaction mechanism. AIChE J., 2019, 65(2), 662-674.
[20]
Gao, M.; Li, H.; Yang, M.; Zhou, J.; Yuan, X.; Tian, P. A modeling study on reaction and diffusion in MTO process over SAPO-34 zeolites. Chem. Eng. J., 2019, 377119668
[http://dx.doi.org/10.1016/j.cej.2018.08.054]
[21]
Rostami, R.B.; Lemraski, A.S.; Ghavipour, M.; Behbahani, R.M.; Shahraki, B.H.; Hamule, T. Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate (SAPO-34) catalyst. Chem. Eng. Res. Des., 2016, 106, 347-355.
[http://dx.doi.org/10.1016/j.cherd.2015.10.019]
[22]
Sedighi, M.; Bahrami, H.; Towfighi, J. Kinetic modeling formulation of the methanol to olefin process: Parameter estimation. J. Ind. Eng. Chem., 2014, 20(5), 3108-3114.
[http://dx.doi.org/10.1016/j.jiec.2013.11.052]
[23]
Sedighi, M.; Keyvanloo, K. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst. Frontiers Chem. Sci. Eng., 2014, 8(3), 306-311.
[http://dx.doi.org/10.1007/s11705-014-1440-z]
[24]
Najafabadi, A.T.; Fatemi, S.; Sohrabi, M.; Salmasi, M. Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J. Ind. Eng. Chem., 2012, 18(1), 29-37.
[http://dx.doi.org/10.1016/j.jiec.2011.11.088]
[25]
Azarhoosh, M.J.; Halladj, R.; Askari, S. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson mechanism. J. Phys. Condens. Matter, 2017, 29(42)425202
[http://dx.doi.org/10.1088/1361-648X/aa85f0] [PMID: 28805191]
[26]
Azarhoosh, M.J.; Halladj, R.; Askari, S. A dynamic kinetic model for methanol to light olefins reactions over a nanohierarchical SAPO‐34 catalyst: catalyst synthesis, model presentation, and validation at the bench scale. Int. J. Chem. Kinet., 2018, 50(3), 149-163.
[http://dx.doi.org/10.1002/kin.21146]
[27]
Bos, A.R.; Tromp, P.J.; Akse, H.N. Conversion of methanol to lower olefins. Kinetic modeling, reactor simulation, and selection. Ind. Eng. Chem. Res., 1995, 34(11), 3808-3816.
[http://dx.doi.org/10.1021/ie00038a018]
[28]
Ying, L.; Yuan, X.; Ye, M.; Cheng, Y.; Li, X.; Liu, Z. A seven lumped kinetic model for industrial catalyst in DMTO process. Chem. Eng. Res. Des., 2015, 100, 179-191.
[http://dx.doi.org/10.1016/j.cherd.2015.05.024]
[29]
Jianglong, P.; Huixin, W. Kinetic modeling of methanol to olefins (MTO) process on SAPO-34 catalyst. China Pet. Process. Petrochem. Technol., 2013, 2(2), 6.
[30]
Gayubo, A.G.; Aguayo, A.T.; Olazar, M.; Vivanco, R.; Bilbao, J. Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process. Chem. Eng. Sci., 2003, 58(23-24), 5239-5249.
[http://dx.doi.org/10.1016/j.ces.2003.08.020]
[31]
Chen, D.; Gronvold, A.; Moljord, K.; Holmen, A. Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind. Eng. Chem. Res., 2007, 46(12), 4116-4123.
[http://dx.doi.org/10.1021/ie0610748]
[32]
Sani, A.G.; Ebrahim, H.A.; Azarhoosh, M. 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel, 2018, 225, 322-335.
[http://dx.doi.org/10.1016/j.fuel.2018.03.087]
[33]
Ding, Y.; Zhang, W.; Yu, L.; Lu, K. The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy, 2019, 176, 582-588.
[http://dx.doi.org/10.1016/j.energy.2019.04.030]
[34]
Guo, X.; Wang, J. A general kinetic model for adsorption: theoretical analysis and modeling. J. Mol. Liq., 2019, 288111100
[http://dx.doi.org/10.1016/j.molliq.2019.111100]
[35]
Azrag, M.A.K.; Kadir, T.A.A.; Kabir, M.N.; Jaber, A.S. Large-Scale Kinetic Parameters Estimation of Metabolic Model of Escherichia Coli. Int. J. Mach. Learn. Comput., 2019, 9(2)
[http://dx.doi.org/10.18178/ijmlc.2019.9.2.781]
[36]
Smith, J. Self adaptation in evolutionary algorithms, 2020.
[37]
Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw., 2019, 114, 195-213.
[http://dx.doi.org/10.1016/j.envsoft.2018.11.018]
[38]
Model-based evolutionary algorithms. Thierens, D. Bosman, P.A., Ed.; Proceedings of the genetic and evolutionary computation conference companion, 2019.
[http://dx.doi.org/10.1145/3319619.3323386]
[39]
Kumar, V.; Balasubramanian, P. Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization. Fuel, 2009, 88(11), 2171-2180.
[http://dx.doi.org/10.1016/j.fuel.2009.05.004]
[40]
Schwaab, M.; Biscaia, E.C., Jr; Monteiro, J.L.; Pinto, J.C. Nonlinear parameter estimation through particle swarm optimization. Chem. Eng. Sci., 2008, 63(6), 1542-1552.
[http://dx.doi.org/10.1016/j.ces.2007.11.024]
[41]
Rezazi, S; Hanini, S; SI, MC; Abdelmalek, S Kinetic modeling and parameters identification based on metaheuristic optimization techniques for extraction process of marrubium vulgare l. essential oil 2017.
[42]
Agarwal, S.; Tyagi, I.; Gupta, V.K.; Ghaedi, M.; Masoomzade, M.; Ghaedi, A. RETRACTED: Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions—artificial neural network-particle swarm optimization modeling; Elsevier, 2016.