New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients

Page: [289 - 297] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies.

Objective: The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma.

Methods: The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed.

Results: We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma.

Conclusion: The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.

Keywords: Airway hyperresponsiveness, allergy, oxazolidine, anti-inflammatory, cytokine, treatment resistance.

Graphical Abstract

[1]
Resiliac, J.; Grayson, M.H. Epidemiology of infections and development of asthma. Immunol. Allergy Clin. North Am., 2019, 39(3), 297-307.
[http://dx.doi.org/10.1016/j.iac.2019.03.001] [PMID: 31284921]
[2]
Kuruvilla, M.E.; Vanijcharoenkarn, K.; Shih, J.A.; Lee, F.E.H. Epidemiology and risk factors for asthma. Respir. Med., 2019, 149, 16-22.
[http://dx.doi.org/10.1016/j.rmed.2019.01.014] [PMID: 30885424]
[3]
Christou, E.A.A.; Giardino, G.; Stefanaki, E.; Ladomenou, F. Asthma: An Undermined State of Immunodeficiency. Int. Rev. Immunol., 2019, 38(2), 70-78.
[http://dx.doi.org/10.1080/08830185.2019.1588267] [PMID: 30939053]
[4]
Mims, J.W. Asthma: definitions and pathophysiology. Int. Forum Allergy Rhinol., 2015, 5(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1002/alr.21609] [PMID: 26335832]
[5]
Han, M.; Rajput, C.; Hershenson, M.B. Rhinovirus Attributes that Contribute to Asthma Development. Immunol. Allergy Clin. North Am., 2019, 39(3), 345-359.
[http://dx.doi.org/10.1016/j.iac.2019.03.004] [PMID: 31284925]
[6]
Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Hershey, G.K.K. Environmental exposures and mechanisms in allergy and asthma development. J. Clin. Invest., 2019, 129(4), 1504-1515.
[http://dx.doi.org/10.1172/JCI124612] [PMID: 30741719]
[7]
Ayakannu, R.; Abdullah, N.A.; Radhakrishnan, A.K.; Lechimi Raj, V.; Liam, C.K. Relationship between various cytokines implicated in asthma. Hum. Immunol., 2019, 80(9), 755-763.
[http://dx.doi.org/10.1016/j.humimm.2019.04.018] [PMID: 31054782]
[8]
Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity, 2019, 50(4), 975-991.
[http://dx.doi.org/10.1016/j.immuni.2019.03.018] [PMID: 30995510]
[9]
Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/ni.3049] [PMID: 25521684]
[10]
Fogli, L.K.; Sundrud, M.S.; Goel, S.; Bajwa, S.; Jensen, K.; Derudder, E.; Sun, A.; Coffre, M.; Uyttenhove, C.; Van Snick, J.; Schmidt-Supprian, M.; Rao, A.; Grunig, G.; Durbin, J.; Casola, S.; Rajewsky, K.; Koralov, S.B. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J. Immunol., 2013, 191(6), 3100-3111.
[http://dx.doi.org/10.4049/jimmunol.1301360] [PMID: 23966625]
[11]
Wakashin, H.; Hirose, K.; Maezawa, Y.; Kagami, S.; Suto, A.; Watanabe, N.; Saito, Y.; Hatano, M.; Tokuhisa, T.; Iwakura, Y.; Puccetti, P.; Iwamoto, I.; Nakajima, H. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am. J. Respir. Crit. Care Med., 2008, 178(10), 1023-1032.
[http://dx.doi.org/10.1164/rccm.200801-086OC] [PMID: 18787221]
[12]
Peebles, R.S., Jr; Aronica, M.A. Proinflammatory Pathways in the Pathogenesis of Asthma. Clin. Chest Med., 2019, 40(1), 29-50.
[http://dx.doi.org/10.1016/j.ccm.2018.10.014] [PMID: 30691715]
[13]
Wadhwa, R.; Dua, K.; Adcock, I.M.; Horvat, J.C.; Kim, R.Y.; Hansbro, P.M. Cellular mechanisms underlying steroid-resistant asthma. Eur. Respir. Rev., 2019, 28(153), 1-10.
[http://dx.doi.org/10.1183/16000617.0096-2019] [PMID: 31636089]
[14]
Nanzer, A.M.; Chambers, E.S.; Ryanna, K.; Richards, D.F.; Black, C.; Timms, P.M.; Martineau, A.R.; Griffiths, C.J.; Corrigan, C.J.; Hawrylowicz, C.M. Enhanced production of IL-17A in patients with severe asthma is inhibited by 1α,25-dihydroxyvitamin D3 in a glucocorticoid-independent fashion. J. Allergy Clin. Immunol., 2013, 132(2), 297-304.e3.
[http://dx.doi.org/10.1016/j.jaci.2013.03.037] [PMID: 23683514]
[15]
Doe, C.; Bafadhel, M.; Siddiqui, S.; Desai, D.; Mistry, V.; Rugman, P.; McCormick, M.; Woods, J.; May, R.; Sleeman, M.A.; Anderson, I.K.; Brightling, C.E. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest, 2010, 138(5), 1140-1147.
[http://dx.doi.org/10.1378/chest.09-3058] [PMID: 20538817]
[16]
Agache, I.; Ciobanu, C.; Agache, C.; Anghel, M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir. Med., 2010, 104(8), 1131-1137.
[http://dx.doi.org/10.1016/j.rmed.2010.02.018] [PMID: 20338742]
[17]
Al-Ramli, W.; Préfontaine, D.; Chouiali, F.; Martin, J.G.; Olivenstein, R.; Lemière, C.; Hamid, Q.T. (H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol., 2009, 123(5), 1185-1187.
[http://dx.doi.org/10.1016/j.jaci.2009.02.024] [PMID: 19361847]
[18]
Raundhal, M.; Morse, C.; Khare, A.; Oriss, T.B.; Milosevic, J.; Trudeau, J.; Huff, R.; Pilewski, J.; Holguin, F.; Kolls, J.; Wenzel, S.; Ray, P.; Ray, A. High IFN-γ and low SLPI mark severe asthma in mice and humans. J. Clin. Invest., 2015, 125(8), 3037-3050.
[http://dx.doi.org/10.1172/JCI80911] [PMID: 26121748]
[19]
Whittle, E.; Leonard, M.O.; Gant, T.W.; Tonge, D.P. Multi-method molecular characterisation of human dust-mite-associated allergic asthma. Sci. Rep., 2019, 9(1), 8912.
[http://dx.doi.org/10.1038/s41598-019-45257-1] [PMID: 31221987]
[20]
Dahlberg, P.E.; Busse, W.W. Is intrinsic asthma synonymous with infection? Clin. Exp. Allergy, 2009, 39(9), 1324-1329.
[http://dx.doi.org/10.1111/j.1365-2222.2009.03322.x] [PMID: 19638039]
[21]
Hayashi, N.; Yoshimoto, T.; Izuhara, K.; Matsui, K.; Tanaka, T.; Nakanishi, K. T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-γ and IL-13 production. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14765-14770.
[http://dx.doi.org/10.1073/pnas.0706378104] [PMID: 17766435]
[22]
Ebensen, T.; Schulze, K.; Riese, P.; Link, C.; Morr, M.; Guzmán, C.A. The bacterial second messenger cyclic diGMP exhibits potent adjuvant properties. Vaccine, 2007, 25(8), 1464-1469.
[http://dx.doi.org/10.1016/j.vaccine.2006.10.033] [PMID: 17187906]
[23]
Ray, A.; Raundhal, M.; Oriss, T.B.; Ray, P.; Wenzel, S.E. Current concepts of severe asthma. J. Clin. Invest., 2016, 126(7), 2394-2403.
[http://dx.doi.org/10.1172/JCI84144] [PMID: 27367183]
[24]
Stokes, J.R.; Casale, T.B. Characterization of asthma endotypes: implications for therapy. Ann. Allergy Asthma Immunol., 2016, 117(2), 121-125.
[http://dx.doi.org/10.1016/j.anai.2016.05.016] [PMID: 27499539]
[25]
Nirula, A.; Nilsen, J.; Klekotka, P.; Kricorian, G.; Erondu, N.; Towne, J.E.; Russell, C.B.; Martin, D.A.; Budelsky, A.L. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases. Rheumatology (Oxford), 2016, 55(Suppl. 2), ii43-ii55.
[http://dx.doi.org/10.1093/rheumatology/kew346] [PMID: 27856660]
[26]
Huang, J.; Pansare, M. New Treatments for Asthma. Pediatr. Clin. North Am., 2019, 66(5), 925-939.
[http://dx.doi.org/10.1016/j.pcl.2019.06.001] [PMID: 31466682]
[27]
Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med., 2013, 188(11), 1294-1302.
[http://dx.doi.org/10.1164/rccm.201212-2318OC] [PMID: 24200404]
[28]
Puig, L. Brodalumab: the first anti-IL-17 receptor agent for psoriasis. Drugs Today (Barc), 2017, 53(5), 283-297.
[http://dx.doi.org/10.1358/dot.2017.53.5.2613690] [PMID: 28650001]
[29]
Beck, K.M.; Koo, J. Brodalumab for the treatment of plaque psoriasis: up-to-date. Expert Opin. Biol. Ther., 2019, 19(4), 287-292.
[http://dx.doi.org/10.1080/14712598.2019.1579794] [PMID: 30831036]
[30]
Holgate, S.T. Innate and adaptive immune responses in asthma. Nat. Med., 2012, 18(5), 673-683.
[http://dx.doi.org/10.1038/nm.2731] [PMID: 22561831]
[31]
Kirsten, A.; Watz, H.; Pedersen, F.; Holz, O.; Smith, R.; Bruin, G.; Koehne-Voss, S.; Magnussen, H.; Waltz, D.A. The anti-IL-17A antibody secukinumab does not attenuate ozone-induced airway neutrophilia in healthy volunteers. Eur. Respir. J., 2013, 41(1), 239-241.
[http://dx.doi.org/10.1183/09031936.00123612] [PMID: 23277522]
[32]
Meng, X.; Sun, X.; Zhang, Y.; Shi, H.; Deng, W.; Liu, Y.; Wang, G.; Fang, P.; Yang, S. PPARγ Agonist PGZ Attenuates OVA-induced airway inflammation and airway remodeling via RGS4 signaling in mouse model. Inflammation, 2018, 41(6), 2079-2089.
[http://dx.doi.org/10.1007/s10753-018-0851-2] [PMID: 30022363]
[33]
Luczak, E.; Wieczfinska, J.; Sokolowska, M.; Pniewska, E.; Luczynska, D.; Pawliczak, R. Troglitazone, a PPAR-γ agonist, decreases LTC4 concentration in mononuclear cells in patients with asthma. Pharmacol. Rep., 2017, 69(6), 1315-1321.
[http://dx.doi.org/10.1016/j.pharep.2017.05.006] [PMID: 29128815]
[34]
Anderson, J.R.; Mortimer, K.; Pang, L.; Smith, K.M.; Bailey, H.; Hodgson, D.B.; Shaw, D.E.; Knox, A.J.; Harrison, T.W. Evaluation of the PPAR-γ agonist pioglitazone in mild asthma: a double-blind randomized controlled trial. PLoS One, 2016, 11(8)e0160257
[http://dx.doi.org/10.1371/journal.pone.0160257] [PMID: 27560168]
[35]
Xu, J.; Zhu, Y.T.; Wang, G.Z.; Han, D.; Wu, Y.Y.; Zhang, D.X.; Liu, Y.; Zhang, Y.H.; Xie, X.M.; Li, S.J.; Lu, J.M.; Liu, L.; Feng, W.; Sun, X.Z.; Li, M.X. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma. Acta Pharmacol. Sin., 2015, 36(2), 171-178.
[http://dx.doi.org/10.1038/aps.2014.128] [PMID: 25619395]
[36]
Maślanka, T.; Otrocka-Domagała, I.; Zuśka-Prot, M.; Gesek, M. Beneficial effects of rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, in a mouse allergic asthma model is not associated with the recruitment or generation of Foxp3-expressing CD4+ regulatory T cells. Eur. J. Pharmacol., 2019, 848(January), 30-38.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.053] [PMID: 30710547]
[37]
Naresh, A.; Venkateswara Rao, M.; Kotapalli, S.S.; Ummanni, R.; Venkateswara Rao, B. Oxazolidinone derivatives: cytoxazone-linezolid hybrids induces apoptosis and senescence in DU145 prostate cancer cells. Eur. J. Med. Chem., 2014, 80, 295-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.062] [PMID: 24793880]
[38]
Rodrigues, F.A.R. Bomfim, Ida.S.; Cavalcanti, B.C.; Pessoa, C.; Goncalves, R.S.B.; Wardell, J.L.; Wardell, S.M.S.V.; de Souza, M.V.N. Mefloquine-oxazolidine derivatives: a new class of anticancer agents. Chem. Biol. Drug Des., 2014, 83(1), 126-131.
[http://dx.doi.org/10.1111/cbdd.12210] [PMID: 23961998]
[39]
Renslo, A.R. Antibacterial oxazolidinones: emerging structure-toxicity relationships. Expert Rev. Anti Infect. Ther., 2010, 8(5), 565-574.
[http://dx.doi.org/10.1586/eri.10.26] [PMID: 20455685]
[40]
Zurenko, G.E.; Gibson, J.K.; Shinabarger, D.L.; Aristoff, P.A.; Ford, C.W.; Tarpley, W.G. Oxazolidinones: a new class of antibacterials. Curr. Opin. Pharmacol., 2001, 1(5), 470-476.
[http://dx.doi.org/10.1016/S1471-4892(01)00082-0] [PMID: 11764772]
[41]
Kamal, A.; Swapna, P.; Shetti, R.V.C.R.N.C.; Shaik, A.B.; Narasimha Rao, M.P.; Gupta, S. Synthesis, biological evaluation of new oxazolidino-sulfonamides as potential antimicrobial agents. Eur. J. Med. Chem., 2013, 62, 661-669.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.034] [PMID: 23434639]
[42]
da Rocha, Junior L.F.; Rêgo, M.J.; Cavalcanti, M.B.; Pereira, M.C.; Pitta, M.G.D.R.; de Oliveira, P.S.S.; Gonçalves, S.M.C.; Duarte, A.L.B.P. de Lima, Mdo.C.; Pitta, Ida.R.; Pitta, M.G.D.R. Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res. Int., 2013, 2013926060
[http://dx.doi.org/10.1155/2013/926060] [PMID: 24078927]
[43]
Cariou, B.; Charbonnel, B.; Staels, B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab., 2012, 23(5), 205-215.
[http://dx.doi.org/10.1016/j.tem.2012.03.001] [PMID: 22513163]
[44]
Fresno, N.; Macías-González, M.; Torres-Zaguirre, A.; Romero-Cuevas, M.; Sanz-Camacho, P.; Elguero, J.; Pavón, F.J.; de Fonseca, F.R.; Goya, P.; Pérez-Fernández, R. Novel oxazolidinone based PPAR agonists : molecular modeling, synthesis and biological evaluation. J. Med. Chem., 2015, 58(16), 6639-6652.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00849] [PMID: 26226490]
[45]
Branco-Junior, J.F.; Teixeira, D.R.C.; Pereira, M.C.; Pitta, I.R.; Galdino-Pitta, M.R. The role of oxazolidine derivatives in the treatment of infectious and chronic diseases. Curr. Bioact. Compd., 2016.
[http://dx.doi.org/10.2174/1573407213666161214162149]
[46]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini-reviews. Med. Chem., 2017.
[http://dx.doi.org/10.2174/1389557517666170807123201] [PMID: 28782480]
[47]
Guerra, A.S.; Malta, D.J.; Laranjeira, L.P.; Maia, M.B.; Colaço, N.C. de Lima, Mdo. C.; Galdino, S.L.; Pitta, Ida.R.; Gonçalves-Silva, T. Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives. Int. Immunopharmacol., 2011, 11(11), 1816-1822.
[http://dx.doi.org/10.1016/j.intimp.2011.07.010] [PMID: 21855654]
[48]
Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discov., 2012, 7(5), 375-383.
[http://dx.doi.org/10.1517/17460441.2012.678829] [PMID: 22462734]
[49]
Ahmad, T.B.; Rudd, D.; Smith, J.; Kotiw, M.; Mouatt, P.; Seymour, L.M.; Liu, L.; Benkendorff, K. Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc. Mar. Drugs, 2017, 15(5)E133
[http://dx.doi.org/10.3390/md15050133] [PMID: 28481239]
[50]
Lind, K.F.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.Ø.; Andersen, J.H. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11(7), 2655-2666.
[http://dx.doi.org/10.3390/md11072655] [PMID: 23880935]
[51]
Parisini, E.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in halocarbon-protein complexes: a structural survey. Chem. Soc. Rev., 2011, 40(5), 2267-2278.
[http://dx.doi.org/10.1039/c0cs00177e] [PMID: 21365086]
[52]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[53]
Daina, A.; Michielin, O.; Zoete, V. Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[54]
Faine, L.A.; Rudnicki, M.; César, F.A.; Heras, B.L.; Boscá, L.; Souza, E.S.; Hernandes, M.Z.; Galdino, S.L.; Lima, M.C.; Pitta, I.R.; Abdalla, D.S. Anti-inflammatory and antioxidant properties of a new arylidene-thiazolidinedione in macrophages. Curr. Med. Chem., 2011, 18(22), 3351-3360.
[http://dx.doi.org/10.2174/092986711796504600] [PMID: 21728966]
[55]
Lee, H.Y.; Hur, J.; Kim, I.K.; Kang, J.Y.; Yoon, H.K.; Lee, S.Y.; Kwon, S.S.; Kim, Y.K.; Rhee, C.K. Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model. Exp. Lung Res., 2017, 43(4-5), 187-196.
[http://dx.doi.org/10.1080/01902148.2017.1339141] [PMID: 28696800]
[56]
Ye, Q.; Chourey, S.; Wang, R.; Chintam, N.R.; Gravel, S.; Powell, W.S.; Rokach, J. Structure-activity relationship study of β-oxidation resistant indole-based 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) receptor antagonists. Bioorg. Med. Chem. Lett., 2017, 27(20), 4770-4776.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.034] [PMID: 28943042]
[57]
El-Sayed, N.A.; Nour, M.S.; Salem, M.A.; Arafa, R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183111693
[http://dx.doi.org/10.1016/j.ejmech.2019.111693] [PMID: 31539778]
[58]
Ohtake, J.; Kaneumi, S.; Tanino, M.; Kishikawa, T.; Terada, S.; Sumida, K.; Masuko, K.; Ohno, Y.; Kita, T.; Iwabuchi, S.; Shinohara, T.; Tanino, Y.; Takemura, T.; Tanaka, S.; Kobayashi, H.; Kitamura, H. Neuropeptide signaling through neurokinin-1 and neurokinin-2 receptors augments antigen presentation by human dendritic cells. J. Allergy Clin. Immunol., 2015, 136(6), 1690-1694.
[http://dx.doi.org/10.1016/j.jaci.2015.06.050] [PMID: 26371842]
[59]
Schuiling, M.; Zuidhof, A.B.; Zaagsma, J.; Meurs, H. Involvement of tachykinin NK1 receptor in the development of allergen-induced airway hyperreactivity and airway inflammation in conscious, unrestrained guinea pigs. Am. J. Respir. Crit. Care Med., 1999, 159(2), 423-430.
[http://dx.doi.org/10.1164/ajrccm.159.2.9804125] [PMID: 9927353]
[60]
De Swert, K.O.; Tournoy, K.G.; Joos, G.F.; Pauwels, R.A. The role of the tachykinin NK1 receptor in airway changes in a mouse model of allergic asthma. J. Allergy Clin. Immunol., 2004, 113(6), 1093-1099.
[http://dx.doi.org/10.1016/j.jaci.2004.03.015] [PMID: 15208590]
[61]
Joachim, R.A.; Sagach, V.; Quarcoo, D.; Dinh, Q.T.; Arck, P.C.; Klapp, B.F. Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice. Psychosom. Med., 2004, 66(4), 564-571.
[http://dx.doi.org/10.1097/01.psy.0000132878.08780.93] [PMID: 15272104]
[62]
Wei, B.; Sun, M.; Shang, Y.; Zhang, C.; Jiao, X. Neurokinin 1 receptor promotes rat airway smooth muscle cell migration in asthmatic airway remodelling by enhancing tubulin expression. J. Thorac. Dis., 2018, 10(8), 4849-4857.
[http://dx.doi.org/10.21037/jtd.2018.07.114] [PMID: 30233858]
[63]
Grobman, M.; Krumme, S.; Outi, H.; Dodam, J.R.; Reinero, C.R. Acute neurokinin-1 receptor antagonism fails to dampen airflow limitation or airway eosinophilia in an experimental model of feline asthma. J. Feline Med. Surg., 2016, 18(2), 176-181.
[http://dx.doi.org/10.1177/1098612X15581405] [PMID: 25964467]
[64]
Grobman, M.; Graham, A.; Outi, H.; Dodam, J.R.; Reinero, C.R. Chronic neurokinin-1 receptor antagonism fails to ameliorate clinical signs, airway hyper-responsiveness or airway eosinophilia in an experimental model of feline asthma. J. Feline Med. Surg., 2016, 18(4), 273-279.
[http://dx.doi.org/10.1177/1098612X15581406] [PMID: 25964466]
[65]
Duffy, R.A. Potential therapeutic targets for neurokinin-1 receptor antagonists. Expert Opin. Emerg. Drugs, 2004, 9(1), 9-21.
[http://dx.doi.org/10.1517/14728214.9.1.9] [PMID: 15155133]
[66]
Ichinose, M.; Miura, M.; Yamauchi, H.; Kageyama, N.; Tomaki, M.; Oyake, T.; Ohuchi, Y.; Hida, W.; Miki, H.; Tamura, G.; Shirato, K. A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am. J. Respir. Crit. Care Med., 1996, 153(3), 936-941.
[http://dx.doi.org/10.1164/ajrccm.153.3.8630576] [PMID: 8630576]
[67]
Alvaro, G.; Di Fabio, R. Neurokinin 1 receptor antagonists--current prospects. Curr. Opin. Drug Discov. Devel., 2007, 10(5), 613-621.
[PMID: 17786860]
[68]
Lu, Y.; Kared, H.; Tan, S.W.; Becht, E.; Newell, E.W.; Van Bever, H.P.S.; Ng, T.P.; Larbi, A. Dynamics of helper CD4 T cells during acute and stable allergic asthma. Mucosal Immunol., 2018, 11(6), 1640-1652.
[http://dx.doi.org/10.1038/s41385-018-0057-9] [PMID: 30087444]
[69]
Ray, A.; Kolls, J.K. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol., 2017, 38(12), 942-954.
[http://dx.doi.org/10.1016/j.it.2017.07.003] [PMID: 28784414]
[70]
Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; Butler, C.A.; Hargadon, B.; Sciurba, J.C.; Gieseck, R.L.; Thompson, R.W.; White, S.; Abbas, A.R.; Jackman, J.; Wu, L.C.; Egen, J.G.; Heaney, L.G.; Ramalingam, T.R.; Arron, J.R.; Wynn, T.A.; Bradding, P. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci. Transl. Med., 2015, 7(301)301ra129
[http://dx.doi.org/10.1126/scitranslmed.aab3142] [PMID: 26290411]
[71]
Krishnamoorthy, N.; Douda, D.N.; Brüggemann, T.R.; Ricklefs, I.; Duvall, M.G.; Abdulnour, R.E.; Martinod, K.; Tavares, L.; Wang, X.; Cernadas, M.; Israel, E.; Mauger, D.T.; Bleecker, E.R.; Castro, M.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Wenzel, S.; Dunican, E.; Fahy, J.V.; Irimia, D.; Wagner, D.D.; Levy, B.D. National Heart, Lung, and Blood Institute Severe Asthma Research Program-3 Investigators. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol., 2018, 3(26)eaao4747
[http://dx.doi.org/10.1126/sciimmunol.aao4747] [PMID: 30076281]
[72]
Hasegawa, T.; Uga, H.; Mori, A.; Kurata, H. Increased serum IL-17A and Th2 cytokine levels in patients with severe uncontrolled asthma. Eur. Cytokine Netw., 2017, 28(1), 8-18.
[http://dx.doi.org/10.1684/ecn.2017.0390] [PMID: 28840844]
[73]
Zhao, J.; Lloyd, C.M.; Noble, A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol., 2013, 6(2), 335-346.
[http://dx.doi.org/10.1038/mi.2012.76] [PMID: 22892938]
[74]
Foulkes, A.C.; Warren, R.B. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context, 2019, 8212570
[http://dx.doi.org/10.7573/dic.212570] [PMID: 31024633]
[75]
Yu, J.H.; Long, L.; Luo, Z.X.; You, J.R. Effect of PPARγ agonist (rosiglitazone) on the secretion of Th2 cytokine in asthma mice. Asian Pac. J. Trop. Med., 2017, 10(1), 64-68.
[http://dx.doi.org/10.1016/j.apjtm.2016.10.006] [PMID: 28107868]
[76]
Duvall, M.G.; Barnig, C.; Cernadas, M.; Ricklefs, I.; Krishnamoorthy, N.; Grossman, N.L.; Bhakta, N.R.; Fahy, J.V.; Bleecker, E.R.; Castro, M.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Mauger, D.T.; Wenzel, S.E.; Comhair, S.A.; Coverstone, A.M.; Fajt, M.L.; Hastie, A.T.; Johansson, M.W.; Peters, M.C.; Phillips, B.R.; Israel, E.; Levy, B.D. National Heart, Lung, and Blood Institute’s Severe Asthma Research Program-3 Investigators. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci. Immunol., 2017, 2(9)eaam5446
[http://dx.doi.org/10.1126/sciimmunol.aam5446] [PMID: 28783702]
[77]
Oriss, T.B.; Raundhal, M.; Morse, C.; Huff, R.E.; Das, S.; Hannum, R.; Gauthier, M.C.; Scholl, K.L.; Chakraborty, K.; Nouraie, S.M.; Wenzel, S.E.; Ray, P.; Ray, A. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight, 2017, 2(10), 1-16.
[http://dx.doi.org/10.1172/jci.insight.91019] [PMID: 28515358]
[78]
Sykes, A.; Edwards, M.R.; Macintyre, J.; del Rosario, A.; Bakhsoliani, E.; Trujillo-Torralbo, M.B.; Kon, O.M.; Mallia, P.; McHale, M.; Johnston, S.L. Rhinovirus 16-induced IFN-α and IFN-β are deficient in bronchoalveolar lavage cells in asthmatic patients. J. Allergy Clin. Immunol., 2012, 129(6), 1506-1514.e6.
[http://dx.doi.org/10.1016/j.jaci.2012.03.044] [PMID: 22657407]
[79]
Bhakta, N.R.; Christenson, S.A.; Nerella, S.; Solberg, O.D.; Nguyen, C.P.; Choy, D.F.; Jung, K.L.; Garudadri, S.; Bonser, L.R.; Pollack, J.L.; Zlock, L.T.; Erle, D.J.; Langelier, C.; Derisi, J.L.; Arron, J.R.; Fahy, J.V.; Woodruff, P.G. IFN-stimulated gene expression, type 2 inflammation, and Endoplasmic Reticulum Stress in Asthma. Am. J. Respir. Crit. Care Med., 2018, 197(3), 313-324.
[http://dx.doi.org/10.1164/rccm.201706-1070OC] [PMID: 29064281]
[80]
Yu, M.; Eckart, M.R.; Morgan, A.A.; Mukai, K.; Butte, A.J.; Tsai, M.; Galli, S.J. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J. Clin. Invest., 2011, 121(8), 3133-3143.
[http://dx.doi.org/10.1172/JCI43598] [PMID: 21737883]
[81]
Pejler, G. The emerging role of mast cell proteases in asthma. Eur. Respir. J., 2019, 54(4)1900685
[http://dx.doi.org/10.1183/13993003.00685-2019] [PMID: 31371445]
[82]
Kobayashi, M.; Ashino, S.; Shiohama, Y.; Wakita, D.; Kitamura, H.; Nishimura, T. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model. Eur. J. Immunol., 2012, 42(2), 393-402.
[http://dx.doi.org/10.1002/eji.201141845] [PMID: 22105467]