Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening

Page: [441 - 454] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Coronavirus Disease 2019 (COVID-19) pandemic continues to threaten patients, societies and healthcare systems around the world. There is an urgent need to search for possible medications.

Objective: This article intends to use virtual screening and molecular docking methods to find potential inhibitors from existing drugs that can respond to COVID-19.

Methods: To take part in the current research investigation and to define a potential target drug that may protect the world from the pandemic of corona disease, a virtual screening study of 129 approved drugs was carried out which showed that their metabolic characteristics, dosages used, potential efficacy and side effects are clear as they have been approved for treating existing infections. Especially 12 drugs against chronic hepatitis B virus, 37 against chronic hepatitis C virus, 37 against human immunodeficiency virus, 14 anti-herpesvirus, 11 anti-influenza, and 18 other drugs currently on the market were considered for this study. These drugs were then evaluated using virtual screening and molecular docking studies on the active site of the (SARS-CoV-2) main protease (6lu7). Once the efficacy of the drug is determined, it can be approved for its in vitro and in vivo activity against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can be beneficial for the rapid clinical treatment of patients.

These drugs were considered potentially effective against SARS-CoV-2 and those with high molecular docking scores were proposed as novel candidates for repurposing. The N3 inhibitor cocrystallized with protease (6lu7) and the anti-HIV protease inhibitor Lopinavir were used as standards for comparison.

Results: The results suggest the effectiveness of Beclabuvir, Nilotinib, Tirilazad, Trametinib and Glecaprevir as potent drugs against SARS-CoV-2 since they tightly bind to its main protease.

Conclusion: These promising drugs can inhibit the replication of the virus; hence, the repurposing of these compounds is suggested for the treatment of COVID-19. No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA. However, the assessment of these potential inhibitors as clinical drugs requires further in vivo tests of these drugs.

Keywords: COVID-19, SARS-CoV-2, 6lu7, antiviral, docking, virtual screening, lopinavir.

[1]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[2]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[4]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[5]
Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J-P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[6]
Li, Y.; Zhao, R.; Zheng, S.; Chen, X.; Wang, J.; Sheng, X.; Zhou, J.; Cai, H.; Fang, Q.; Yu, F.; Fan, J.; Xu, K.; Chen, Y.; Sheng, J. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerg. Infect. Dis., 2020, 26(6), 1335-1336.
[http://dx.doi.org/10.3201/eid2606.200287] [PMID: 32134381]
[7]
Wang, Y.; Yella, J.; Jegga, A.G. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery. Methods Mol. Biol., 2019, 1903, 73-95.
[http://dx.doi.org/10.1007/978-1-4939-8955-3_5] [PMID: 30547437]
[8]
Karatzas, E.; Kolios, G.; Spyrou, G.M. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures. Methods Mol. Biol., 2019, 1903, 149-177.
[http://dx.doi.org/10.1007/978-1-4939-8955-3_9] [PMID: 30547441]
[9]
Turanli, B.; Gulfidan, G.; Arga, K.Y. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma. OMICS, 2017, 21(10), 584-591.
[http://dx.doi.org/10.1089/omi.2017.0127] [PMID: 29049014]
[10]
Huang, G.; Li, J.; Wang, P.; Li, W. A Review of Computational Drug Repositioning Approaches. Comb. Chem. High Throughput Screen., 2017, 20(10), 831-838.
[http://dx.doi.org/10.2174/1386207321666171221112835] [PMID: 29268682]
[11]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Ni, P.; Zhao, K.; Wu, F.X.; Pan, Y. Computational Drug Repositioning with Random Walk on a Heterogeneous Network. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(6), 1890-1900.
[http://dx.doi.org/10.1109/TCBB.2018.2832078] [PMID: 29994051]
[12]
Wu, Z.; Wang, Y.; Chen, L. Network-based drug repositioning. Mol. Biosyst., 2013, 9(6), 1268-1281.
[http://dx.doi.org/10.1039/c3mb25382a] [PMID: 23493874]
[13]
Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 2013, 93(4), 335-341.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[14]
FDA, Approved Drug Products Kaletra (lopinavir/ritonavir) for oral use
[15]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[16]
Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol., 2020, 38(4), 379-381.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[17]
Wan, S.; Xiang, Y.; Fang, W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; Huang, X.; Lv, J.; Luo, Y.; Shen, L.; Yang, H.; Huang, G.; Yang, R. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol., 2020, 92(7), 797-806.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[18]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. New. England. J. Med., 2020, 382(19), 1787-1799.
[19]
Kalil, A.C. Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA, 2020, 323(19), 1897-1898.
[http://dx.doi.org/10.1001/jama.2020.4742] [PMID: 32208486]
[20]
Su, B.; Wang, Y.; Zhou, R.; Jiang, T.; Zhang, H.; Li, Z.; Liu, A.; Shao, Y.; Hua, W.; Zhang, T.; Wu, H.; He, S.; Dai, L.; Sun, L. Efficacy and tolerability of lopinavir/ritonavir- and efavirenz-based initial antiretroviral therapy in HIV-1-infected patients in a tertiary care hospital in Beijing, China. Front. Pharmacol., 2019, 10(1472), 1472.
[http://dx.doi.org/10.3389/fphar.2019.01472] [PMID: 31920659]
[21]
Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-6.
[http://dx.doi.org/10.1080/07391102.2020.1752802] [PMID: 32248766]
[22]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential Inhibitor of COVID-19 Main Protease (Mpro); From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints, 2020, p. 2020030226.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[23]
Gérard, A.; Romani, S.; Fresse, A.; Viard, D.; Parassol, N.; Granvuillemin, A.; Chouchana, L.; Rochera, F.; Drici, M-D. ‘Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactionsby the French Network of Pharmacovigilance; Therapies, 2020.
[24]
Lim, J.; Jeon, S.; Shin, H-Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K-W.; Kang, Y.M.; Lee, B.; Park, S-J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6)e79
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[25]
Liu, X.; Wang, X.J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genomics, 2020, 47(2), 119-121.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[26]
Nukoolkarn, V.; Lee, V.S.; Malaisree, M.; Aruksakulwong, O.; Hannongbua, S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. J. Theor. Biol., 2008, 254(4), 861-867.
[http://dx.doi.org/10.1016/j.jtbi.2008.07.030] [PMID: 18706430]
[27]
Dömling, A.; Gao, L. Chemistry and Biology of SARS-CoV-2. Chem, 2020, 6(6), 1283-1295.
[http://dx.doi.org/10.1016/j.chempr.2020.04.023] [PMID: 32529116]
[28]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3 Complex (PDB ID: 6lu7) 2020.
[29]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: San Diego, 2016.
[30]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[31]
Saxena, S.K.; Saxena, S.; Saxena, R.; Swamy, A.; Gupta, A.; Nai, M. Emerging Trends, Challenges and Prospects in Antiviral Therapeutics and Drug Development for Infectious Diseases, Electronic. J. Biol., 2010, 6(2), 26-31.
[32]
Sybyl-X 2.0 Tripos International, St. Louis, Missouri, 63144, USA
[33]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.https://10.1002%2Fjcc.21334
[PMID: 19499576]
[34]
Du, X.; Li, Y.; Xia, Y-L.; Ai, S-M.; Liang, J.; Sang, P.; Ji, X-L.; Liu, S-Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci., 2016, 17(2), 144.
[http://dx.doi.org/10.3390/ijms17020144] [PMID: 26821017]
[35]
Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease - Inhibitor N3 Complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020.
[http://dx.doi.org/10.1021/acs.jcim.0c00283] [PMID: 32539372]
[36]
Tatum, H.; Thuluvath, P.J.; Lawitz, E.; Martorell, C.; DeMicco, M.; Cohen, S.; Rustgi, V.; Ravendhran, N.; Ghalib, R.; Hanson, J.; Zamparo, J.; Zhao, J.; Cooney, E.; Treitel, M.; Hughes, E. A randomized, placebo-controlled study of the NS5B inhibitor beclabuvir with peginterferon/ribavirin for HCV genotype 1. J. Viral Hepat., 2015, 22(8), 658-664.
[http://dx.doi.org/10.1111/jvh.12372] [PMID: 25496007]
[37]
Chen, Y.; Yin, H.; Chen, L.; Xiong, Y.; Meng, L.; Guo, J.; Wang, H.; Li, W. Feasibility Study of Switching to Nilotinib After First-line Imatinib in the Chronic Phase of Chronic Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk., 2020, 20(2), e43-e49.
[http://dx.doi.org/10.1016/j.clml.2019.12.001] [PMID: 31902734]
[38]
STIPAS Investigators. Safety study of tirilazad mesylate in patients with acute ischemic stroke (STIPAS). Stroke, 1994, 25(2), 418-423.
[http://dx.doi.org/10.1161/01.STR.25.2.418] [PMID: 8303754]
[39]
Lian, T.; Li, C.; Wang, H. Trametinib in the treatment of multiple malignancies harboring MEK1 mutations. Cancer Treat. Rev., 2019.81101907
[http://dx.doi.org/10.1016/j.ctrv.2019.101907] [PMID: 31715422]
[40]
International Nonproprietary Names for Pharmaceutical Substances. Recommended International Nonproprietary Names: List 76; World Health Organization, 2017, p. 503.