Promising Anti-stroke Signature of Voglibose: Investigation through In- Silico Molecular Docking and Virtual Screening in In-Vivo Animal Studies

Page: [223 - 235] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Postprandial hyperglycemia considered to be a major risk factor for cerebrovascular complications.

Objective: The current study was designed to elucidate the beneficial role of voglibose via in-silico in vitro to in-vivo studies in improving the postprandial glycaemic state by protection against strokeprone type 2 diabetes.

Materials and Methods: In-Silico molecular docking and virtual screening were carried out with the help of iGEMDOCK+ Pymol+docking software and Protein Drug Bank database (PDB). Based on the results of docking studies, in-vivo investigation was carried out for possible neuroprotective action. T2DM was induced by a single injection of streptozotocin (90mg/kg, i.v.) to neonates. Six weeks after induction, voglibose was administered at the dose of 10mg/kg p.o. for two weeks. After eight weeks, diabetic rats were subjected to middle cerebral artery occlusion, and after 72 hours of surgery, neurological deficits were determined. The blood was collected for the determination of serum glucose, CK-MB, LDH and lipid levels. Brains were excised for determination of brain infarct volume, brain hemisphere weight difference, Na+-K+ ATPase activity, ROS parameters, NO levels, and aldose reductase activity.

Results: In-silico docking studies showed good docking binding score for stroke associated proteins, which possibly hypotheses neuroprotective action of voglibose in stroke. In the present in-vivo study, pre-treatment with voglibose showed a significant decrease (p<0.05) in serum glucose and lipid levels. Voglibose has shown significant (p<0.05) reduction in neurological score, brain infarct volume, the difference in brain hemisphere weight. On biochemical evaluation, treatment with voglibose produced significant (p<0.05) decrease in CK-MB, LDH, and NO levels in blood and reduction in Na+-K+ ATPase, oxidative stress, and aldose reductase activity in brain homogenate.

Conclusion: In-silico molecular docking and virtual screening studies and in-vivo studies in MCAo induced stroke, animal model outcomes support the strong anti-stroke signature for possible neuroprotective therapeutics.

Keywords: Cerebrovascular disease, hyperglycemia, focal ischemia, vascular damage, voglibose, stroke.

Graphical Abstract

[1]
Alloubani A, Saleh A, Abdelhafiz I. Hypertension and diabetes mellitus as a predictive risk factors for stroke. Diabetes Metab Syndr 2018; 12(4): 577-84.
[http://dx.doi.org/10.1016/j.dsx.2018.03.009] [PMID: 29571978]
[2]
Benson RT, Sacco RL. Stroke prevention: hypertension, diabetes, tobacco, and lipids. Neurol Clin 2000; 18(2): 309-19.
[http://dx.doi.org/10.1016/S0733-8619(05)70194-8] [PMID: 10757828]
[3]
Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ 2020; 368: 16983.
[http://dx.doi.org/10.1136/bmj.l6983] [PMID: 32054610]
[4]
Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 2000; 77: S26-30.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07705.x] [PMID: 10997687]
[5]
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6(1): 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[6]
Lau LH, Lew J, Borschmann K, Thijs V, Ekinci EI. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J Diabetes Investig 2019; 10(3): 780-92.
[http://dx.doi.org/10.1111/jdi.12932] [PMID: 30220102]
[7]
Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387(10022): 957-67.
[http://dx.doi.org/10.1016/S0140-6736(15)01225-8] [PMID: 26724178]
[8]
Drel VR, Pacher P, Ali TK, et al. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 2008; 21(6): 667-76.
[http://dx.doi.org/10.3892/ijmm.21.6.667] [PMID: 18506358]
[9]
Lo AC, Cheung AK, Hung VK, et al. Deletion of aldose reductase leads to protection against cerebral ischemic injury. J Cereb Blood Flow Metab 2007; 27(8): 1496-509.
[http://dx.doi.org/10.1038/sj.jcbfm.9600452] [PMID: 17293845]
[10]
Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993; 42(6): 801-13.
[http://dx.doi.org/10.2337/diab.42.6.801] [PMID: 8495803]
[11]
Kaku K. Efficacy of voglibose in type 2 diabetes. Expert Opin Pharmacother 2014; 15(8): 1181-90.
[http://dx.doi.org/10.1517/14656566.2014.918956] [PMID: 24798092]
[12]
Chen X, Zheng Y, Shen Y. Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr Med Chem 2006; 13(1): 109-16.
[http://dx.doi.org/10.2174/092986706789803035] [PMID: 16457643]
[13]
Pattanaik SR, Shah P, Baker A, Sinha N, Kumar N, Swami OC. Implications of postprandial hyperglycaemia and role of voglibose in type 2 diabetes mellitus. J Clin Diagn Res 2018; 12(4): 8-12.
[http://dx.doi.org/10.7860/JCDR/2018/32803.11399]
[14]
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011; 12(Suppl. 1): S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[15]
Jones RB, Vickers SP, Cheetham SC, Headland KR, Mark M, Klein T. Effect of linagliptin, alone and in combination with voglibose or exendin-4, on glucose control in male ZDF rats. Eur J Pharmacol 2014; 729: 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.004] [PMID: 24530555]
[16]
Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL. Neonatal streptozotocin-induced rat model of Type 2 diabetes mellitus: A glance. Indian J Pharmacol 2004; 36(4): 217.
[17]
Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23(1): 106-13.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.008] [PMID: 23182363]
[18]
Ma S, Zhao H, Ji X, Luo Y. Peripheral to central: Organ interactions in stroke pathophysiology. Exp Neurol 2015; 272: 41-9.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.014] [PMID: 26054885]
[19]
Dabhi AS, Bhatt NR, Shah MJ. Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res 2013; 7(12): 3023-7.
[PMID: 24551718]
[20]
Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 2005; 19(9): 1088-95.
[http://dx.doi.org/10.1096/fj.05-3718com] [PMID: 15985532]
[21]
Veeranna TK, Kaji T, Boland B, et al. Calpain mediates calcium-induced activation of the erk1, 2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am J Pathol 2004; 165(3): 795-805.
[http://dx.doi.org/10.1016/S0002-9440(10)63342-1] [PMID: 15331404]
[22]
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36(3): 513-38.
[http://dx.doi.org/10.1177/0271678X15617172] [PMID: 26661240]
[23]
Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes 2016; 7(17): 412-22.
[http://dx.doi.org/10.4239/wjd.v7.i17.412] [PMID: 27660698]
[24]
Saxena M, Srivastava N, Banerjee M. Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol Biol Rep 2013; 40(11): 6271-9.
[http://dx.doi.org/10.1007/s11033-013-2739-4] [PMID: 24057184]
[25]
Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 2005; 1(1): 93-106.
[http://dx.doi.org/10.2174/1573399052952631] [PMID: 18220586]
[26]
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10(4): 409-28.
[http://dx.doi.org/10.1080/17512433.2017.1293521] [PMID: 28276776]
[27]
Li Y, Xiao D, Dasgupta C, et al. Perinatal nicotine exposure increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: role of angiotensin II receptors. Stroke 2012; 43(9): 2483-90.
[http://dx.doi.org/10.1161/STROKEAHA.112.664698] [PMID: 22738920]
[28]
Zhan C, Yang J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res 2006; 53(3): 303-9.
[http://dx.doi.org/10.1016/j.phrs.2005.12.008] [PMID: 16459097]
[29]
Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010; 17(3): 197-218.
[http://dx.doi.org/10.1016/j.pathophys.2009.12.001] [PMID: 20074922]
[30]
Liang J, Qi Z, Liu W, et al. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Stroke 2015; 46(5): 1344-51.
[http://dx.doi.org/10.1161/STROKEAHA.114.008599] [PMID: 25804925]
[31]
Lo AC, Chen AY, Hung VK, et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J Cereb Blood Flow Metab 2005; 25(8): 998-1011.
[http://dx.doi.org/10.1038/sj.jcbfm.9600108] [PMID: 15815585]
[32]
Liu Z, Zhu Z, Zhao J, et al. Malondialdehyde: A novel predictive biomarker for post-stroke depression. J Affect Disord 2017; 220: 95-101.
[http://dx.doi.org/10.1016/j.jad.2017.05.023] [PMID: 28600933]
[33]
Ishibashi N, Prokopenko O, Reuhl KR, Mirochnitchenko O. Inflammatory response and glutathione peroxidase in a model of stroke. J Immunol 2002; 168(4): 1926-33.
[http://dx.doi.org/10.4049/jimmunol.168.4.1926] [PMID: 11823528]
[34]
Rashid PA, Whitehurst A, Lawson N, Bath PM. Plasma nitric oxide (nitrate/nitrite) levels in acute stroke and their relationship with severity and outcome. J Stroke Cerebrovasc Dis 2003; 12(2): 82-7.
[http://dx.doi.org/10.1053/jscd.2003.9] [PMID: 17903909]
[35]
Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes 2015; 6(15): 1296-308.
[http://dx.doi.org/10.4239/wjd.v6.i15.1296] [PMID: 26557957]